

令和3年度開始 廃炉·汚染水対策事業費補助金

「燃料デブリの段階的に規模を拡大した取り出し技術の開発」

最終報告 (報告資料)

2023年10月

技術研究組合 国際廃炉研究開発機構

目次 No.1

1. 研究の背景・目的	ページ
1.1 本研究が必要な理由	2
1.2 本研究の成果の反映先と寄与	3
2. 目標	4
3. 実施項目とその関連性、他研究との関連	5
3.1 本研究の実施項目	6
3.2 実施項目間、他研究との関連性	7–8
4. 実施スケジュール	9
5. 実施体制図	10
6. 実施内容	
6.1 取り出し技術の開発計画の更新	11-16
6.2 取り出しのための装置の開発と組合せ試験	
6.2.1 取り出し用アクセス装置(アーム・エンクロージャ等)の開発	17-21
6.2.2 取り出し用装置、システム全体の組合せ試験	22-30
7. まとめと今後の計画	31

1. 研究の背景・目的

1.1 本研究が必要な理由

- 福島第一原子力発電所1~3号機の燃料デブリ取り出しに向けて、装置開発や臨界評価等に燃料デブリ性状に関する情報が必要となる。これまでにTMIやチョルノービリ(チェルノブイリ)での事故データや解析結果等から推定した値を使用している。しかしながら、装置開発を適正に進めるに当たり、推定値が妥当なのか(安全側かどうかも含め)を確認するには現場の燃料デブリを取り出し、分析することが必要である。
- このため、2021年度から引き続き以下の作業を実施した。
 - 燃料デブリの段階的に規模を拡大した取り出し技術の開発計画、取り出し計画の策定、更新
 - 燃料デブリ取り出しのための装置、システムの詳細設計、試作機製作、各種検証試験
 - 燃料デブリ取り出しのための装置の開発と組合せ試験(取り出し用アームのX-6ペネ通過試験)
- 上記の作業で得られた成果や新たに見つかった課題、福島第一原子力発電所の最新状況を踏まえ、燃料デブリ取り出しの位置付けや目標を見直しながら、段階的に規模を拡大した取り出し技術の開発を進める必要があり、本研究にて実施している。

1.2 本研究の成果の反映先と寄与

PCV*1内部調査技術の開発PJ

(原子炉格納容器内部調査技術の開発)

PCV*1内部調査の結果を反映する。

PCV*1内部詳細調査技術の開発PJ

(X-6ペネトレーションを用いた内部詳細調査技術の現場実証)

調査装置の開発進捗を反映する。

*1: PCV=原子炉格納容器

本PJ「燃料デブリの段階的に規模を拡大した取り出し技術の開発」

燃料デブリの段階的に規模を 拡大した取り出し技術の開発 計画、取り出し計画の策定 燃料デブリの段階的に規模を 拡大した取り出しのための 装置、システムの開発

燃料デブリの段階的に規模を拡大した取り出し・分析

硬さ等の物性データ 切削の速度、ダスト飛散状況 U, Pu, Gd等の 成分データ 燃料デブリ 分布データ

水素発生量等の成分データ

廃棄物インベントリ データ

燃料デブリ・炉内構造物の取り出し規模の更なる拡大に向けた技術の開発PJ (臨界管理を含む)

燃料デブリ・炉内構造物の取り出し工法・システムの高度化, 燃料デブリ・炉内構造物の取り出し基盤技術の高度化, 燃料デブリ臨界管理技術の高度化

- ・取り出しセルの系統設計、システム設計への反映
- ・燃料デブリ取り出し工具の設計及び改良
- 臨界評価の妥当性確認

燃料デブリの 性状把握のため の分析・推定技術 の開発PJ

事故進展解析及び実 機データ等による炉内 、状況把握の高度化

炉内の解析結果 の信頼性の確認 燃料デブリの収納・移送・保管 技術の開発PJ

燃料デブリ収納・移 送・保管技術の開発

収納缶の安全 性確認 固体廃棄物の処理・処分に関する研究開発PJ

固体廃棄物の処理・処分に 関する研究開発

廃棄物の全体計画へ の反映 段階的に規模を拡大した取り出し (東電HD実施予定)

段階的に規模を拡大した 取り出し装置等の詳細設計

燃料デブリ取り出しの工法・装置等の詳細設計に係る各研究PJ

2. 目標

事業内容	研究終了時の目標技術成熟度(TRL)
取り出し技術の開発計画の更新	2号機のPCV内部調査等で得られた情報を踏まえて、先行事業(令和元年度開始事業)にて策定した 燃料デブリの段階的に規模を拡大した取り出し技術(取り出し用の装置、システム等)の開発計画が必 要に応じて更新され、次期開発で求められる改良・検証項目とその背景が明確にされていること。 併せて、燃料デブリの段階的に規模を拡大した取り出しに係るシナリオへ最新知見等が必要に応じて 反映・更新されること。
	(情報整理のため技術成熟度(TRL)目標設定の対象外とする)
取り出しのための装	取り出し用アクセス装置(アーム・エンクロージャ等)の開発 先行事業(令和2年度開始事業)で実施した取り出し用アクセス装置(アーム・エンクロージャ等)の詳細 設計に基づき、取り出し用アクセス装置(アームとエンクロージャ)が製作されることで製造ノウハウが 蓄積され、製作した試作機が工場内検証試験などを通して必要とされる機能・性能を発揮すること。 (終了時目標TRL:レベル5)
置の開発と組合せ試験	取り出し用装置、システム全体の組合せ試験 製作した取り出し用アクセス装置(アームとエンクロージャ)と、先行事業(令和元年度開始事業)で202 1年度までに開発した装置を組合せ、単体での工場内検証試験では確認が困難なインターフェース上 の懸念事項や相互の機械的・電気的影響などがシステムとして必要とされる機能・性能を阻害してい ないこと、あるいはその影響や技術課題が把握されていること。 (終了時目標TRL:レベル5)

4トンのPADIRACの遠隔輸送による安全な 燃料デブリ輸送システム構築

IRID

©International Research Institute for Nuclear Decommissioning

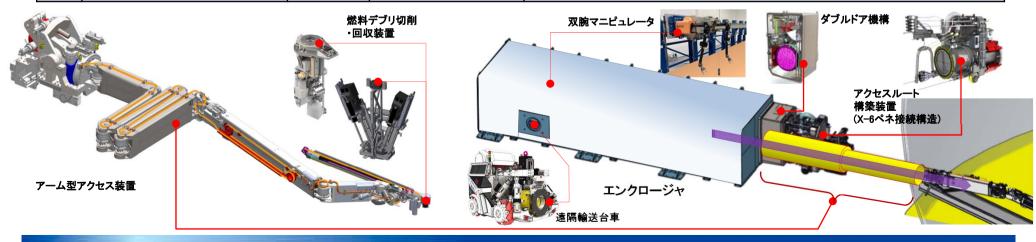
(令和元年度開始事業で製作)

小型·軽量化· 新技術の検証

3. 実施項目とその関連性、他研究との関連

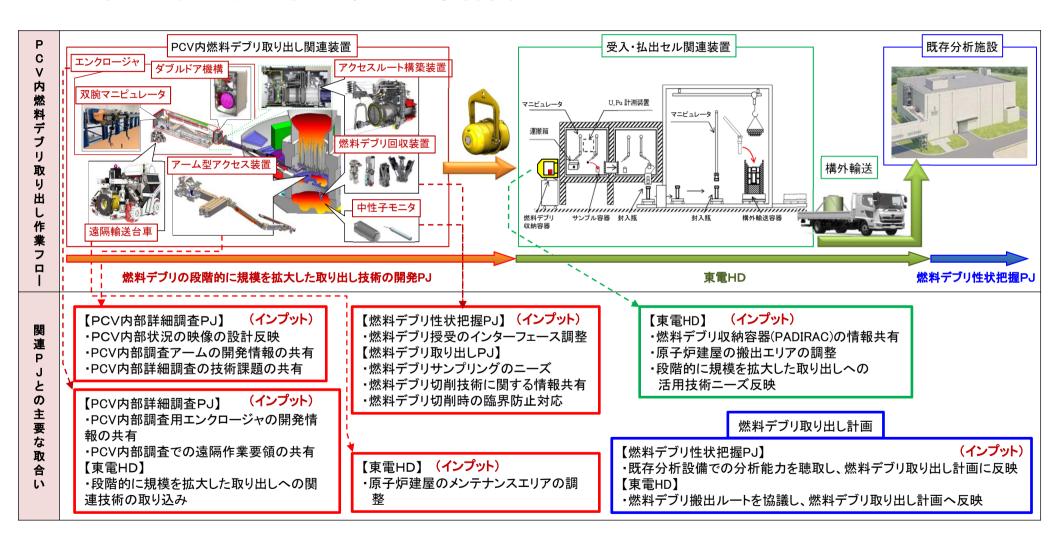
3.1 本研究の実施項目

	実施項目	令和4年度+令和5年度の実施範囲	ページ
取り出し技術の開発	計画の更新	 令和3年度開始時点における開発計画の更新(PCV内部詳細調査アームの検証試験結果を本開発計画に反映するタイミング・着眼点の検討、および各種開発装置の組合せ試験内容の検討) 令和4年度に実施した組合せ試験で抽出された技術課題の次期開発計画への反映。 	11–16
取り出しのための	取り出し用アクセス装置 (アーム・エンクロージャ等)の開発	アーム後半部の設計および製作とアーム前半部との統合エンクロージャの設計および製作	17-21
装置の開発と組合せ試験	開発と組	 組合せ試験の試験計画検討 組合せ試験 アーム前半部と先端ツールの組合せ試験 エンクロージャ関連の組合せ試験 アーム全体の組合せ試験 	22–30


黒文字: 机上検討 赤文字: モノづくり 青文字: 試験

3. 実施項目とその関連性、他研究との関連

3.2 実施項目間、他研究との関係性(1/2)


	実施項目	関連する 項目	連携内容	関係性
Α		B (インプット)	技術課題の開発計画 への反映	本事業での試作機の工場内検証試験で判明した新たな技術課題に対して、 計画を更新する。
	lし技術の †画の更新	C (インプット)	同上	本事業での組合せ試験で判明したシステム連携に関する新たな技術課題に 対して、計画を更新する。
開発と組合の	B 取り出し用アクセス装置(アーム・エンクロージャ等)の開発	C (アウトプット)	組合せ試験を念頭に置い たインターフェースの設定 (下図参照)	システムの全体像を考慮してインターフェースを適切に設定して、装置設計・ 製作へ反映する。
せ試験を置の	C 取り出し用装置、システム全体 の組合せ試験	B (インプット)	取り出し用アクセス装置 (アーム、エンクロージャ 等)の受け渡し	適切なタイミングで装置を受け取り、各装置の取り扱い方法を考慮して、試 験手順や試験設備を準備する。

3. 実施項目とその関連性、他研究との関連

3.2 実施項目間、他研究との関係性(2/2)

上八米五	1. 八华五	2020年度					20	21年	-度									2	2022	年度					20	023年	度	備考
大分類	小分類		4月	5月	6月	7月 8	8月 9月] 10)月11	月12.	月1)	1 2月	3 <i>F</i>	4月	5月	6月	7月	8月	9月	10月1	.1月1	.2月:	1月 2	月 3月	4月	5月	6月	(最新状況)
A 取り出し技術の開発計画の更新																												
取り出しのための装置の開発と	B 取り出し用アクセス装置(アーム・エ									取り	出	し用:	ァー	ム集	製作	・統	合											
組合せ試験	ンクロージャ等)の開発												<u> </u>	Ì	Ī							1						
					⅃	取	り出し	し用	エン	ノクロ	7_	ジャ	製作	F : -	□場	内検	证											
					П			Τ			, ne			Ţ		75	_ 1			1								
								_	+	ХХ	の	7=1		ν- +	- 90	の改造				\vdash	\dashv	-∦,						
	C 取り出し用装置、システム全体の組	アー	ム前	半部	るとり	然料:	デブリ	切	削。[可収割	装置	一中	性子	PE:	ニタ	シス	テム	の組	合t	せ試り	険			 7—	 /. △/:	∣ ተውጀ		試験
	合せ試験													Ť							_,				(工場			2 武硕火
			<u> </u>							/ l.b.t.strs.		<u>.</u>		<u>L,,</u>		- 		,					, 🕴		<u> </u>	1	(HIL)	
		エンクロ	 	シャ 	×ع	-6ペ: 	不接続	売構 │	這/	燃料	 ナ:	עני <i>ק</i>	以納	谷都 	ະທາ ∣	慰隣 斬	前达]	台里(の組	1合せ ↓	:武馬	英	П		Т			
														_							\triangle	+		+				
		双胆	宛マ	ニピ	ュレ	ノータ	マのケ	-7	ブル	遠隔	脱着	機構	载	ダブ	ルド	ア機	構非	常問	詩対反	応の∂	確認	試験	€ ↓					
																					Ħ							
					\dashv				+		+		+		+						₩		+	+				
主要な	ミマイルストン						4	間	· 報告	金			年	度報	告名	슼			ı	中間		- 1	年月	₹報台	会	最	終報	告会
		1			_			\pm	+	+	-	+	+	 	_	-			_		#	_	_		-			
令和2年度開始事業(参考)	・) 取り出し用アームに搭載する要素技	詳細設計								-ᄉ	前	半部	りゅ	製化	作•	工場	内	検証	Œ≓	יבי	ユナ	禍	の景	/響/	こよ	り延	長	
17和4个及所知事来(多为)	横				製作	乍・口	□場内	検	証					<u>.1-</u> -	-		- †				<u>- - </u> -	-	`\					
燃料デブリ取り出し用アクセス	№ 取り出し用エンクロージャに搭載す																	Γ,	組立	<u>な・</u>	調整	-						
装置(アーム・エンクロージャ	る要素技術	ダブルド	アシ	ステ	-74	の要	素試態	矣												+	Ħ	試驗	矣 <mark>.</mark>					
	る安糸技術	=V A=====	<u> </u>											IJ	↓_	<u> </u>					44.		1					
等)の要素技術開発・設計		詳細設	it .																		Ш							
					製	作・	工場内	内検	証												Ш							
	┃ ┃ 取り出し用アクセス装置(アーム・																											
		詳細設計																										
	エンクロージャ等)の全体設計																											
燃料デブリ収納容器の遠隔輸送		詳細設	<u> </u>	\vdash	\dashv	集月	作・コ		<u>т</u> н	≽≡π	+		+	+	+			H			+	+	+		+			
台車の開発		ス市山が十中	P 1			※1	F _	一场	內的	RALL				_				Щ]							
ロージがた															1													

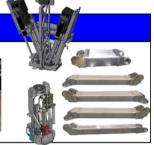
アーム前半部の製作・工場内検証の延長により、本事業へのアーム前半部の引き渡しが2022年11月末となり、アーム全体の組合せ試験(工場内検証)は5月に完了。

5. 実施体制図 No.10

東京電力ホールディングス株式会社

現場適用性の観点での諸調整

技術研究組合 国際廃炉研究開発機構(本部)


- 全体計画の策定と技術統括のとりまとめ
- O 技術開発の進捗などの技術管理のとりまとめ

三菱重工業株式会社

取り出し技術の開発計画の更新 取り出しのための装置の開発と組合せ試験

- ▶ 取り出し用アクセス装置(アーム·エンクロージャ等)の開発
- ▶ 取り出し用装置、システム全体の組合せ試験
- ▶ 切削粉状・円柱状デブリ回収装置の開発

連携する開発プロジェクトチーム

原子炉格納容器内部詳細調査技術の開発 (X-6ペネトレーションを用いた内部詳細調査技術の現場実証)

燃料デブリ・炉内構造物の取り出し規模の更なる拡大に向けた技術の開発

燃料デブリ収納・移送・保管技術の開発

固体廃棄物の処理・処分に関する研究開発

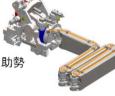
燃料デブリの性状把握のための分析・推定技術の開発

Jacobs:

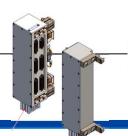
- ・小石・砂状デブリ回収装置(バケット型)の組合せ試験準備
- ・アーム前半部と先端ツールの組合せ試験

ORANO:

・小石・砂状デブリ回収装置(フレキシブルグリッパ型)の組合せ試験準備


Innovative Physics Limited :

・中性子モニタの組合せ試験準備・助勢


VEOLIA NUCLEAR SOLUTIONS:

- ・取り出し用アクセス装置の試作
- ・取り出し用アクセス装置の組合せ試験
- ・アーム前半部と先端ツールの組合せ試験の助勢

双日マシナリー(株) CLEO:

- ・双腕マニピュレータのケーブル遠隔脱着機構の試作
- ・ダブルドア機構の組合せ試験準備・助勢
- ・燃料デブリ収納容器の遠隔輸送台車の組合せ試験準備・助勢

6. 実施内容

6.1 取り出し技術の開発計画の更新

【 2022年度の成果 1/5】

✓ PCV内部詳細調査PJにおけるアクセス装置の製作・組合せ試験で得られる情報を踏まえて、本事業の開発計画への反映時期、反映事項、具体的な内容を更新した。【達成】

取得予定の情報	取得時期 反映時期	開発への反映事項	具体的な実施内容・実施方法	反映状況
PCV調査用アー ムの動作速度	2022年9月	取り出し用アームの予想性能の見直し、速度改善の余地の検討、運用方法変更の余地の検討	テレスコアームに関しては、取り出し用アームの重量、ギア比やモータトルクの相違点を加味して、予想性能を見直した結果、目標速度の達成見通しがあると判断された。 PCV調査用アームでも取り出し用アームと同じ仕様の高トルクモータがテレスコアームに適用され、制御方法の見直しにより速度改善が図られた。	モータ特性データの収集と 制御方法見直しにてテレス コアーム伸長速度の目標値 を達成した。 同様のアプローチでキャリッ ジ前後進速度も改善予定。
PCV調査用アー ムの減衰特性	2021年11月~ 2022年11月	取り出し用アームの予想 挙動の見直し、振動改善 の余地の検討、運用方法 変更の余地の検討	取り出し用アームの長さ、重量の相違点を加味して、振動に 関する予想挙動を見直す。 予想されるアームの振動がX-6ペネやプラットフォーム開口の 通過性に悪影響を与える場合や、先端ツールの燃料デブリ接 近時の振動振幅が100mmを超える場合には、低速運転によ る振動改善余地を検討する。 振動改善余地が十分ではないと評価された場合、操作手順 の見直しによる振動抑制の余地を検討する。	水平は4%以上、上下は1% 未満であった。ただし振動の 静定に時間を要するためペ デスタル内でのアームの着 座は有用と判断される。 取得データは機構解析に今 後、活用していく。
双腕マニピュ レータの外付け ケーブルの付け 外し作業性	2022年11月	取り出し用アームのケー ブル固定構造やケーブル ドラム構造の見直し、取り 付け作業用の専用治具の 要否の検討、外付けケー ブルの改良余地の検討	双腕マニピュレータによる遠隔操作性を改善するための、 ケーブル固定構造やケーブルドラム構造を見直し、電動巻き 取り機を開発した。	電動巻き取りにより、遠隔操作性が改善した。 エンクロージャ内の有効スペースで巻き取るための手順を反映する。
外付けケーブル 切断カッターの 改良	2023年1月	外付けケーブル切断機構 と外付けケーブルの改良 余地の検討	外付けケーブルの補強部材であるケブラー繊維が切断機構による万が一対応の機能を阻害しているため、カッター刃を改良した。PCV調査用アームでは、3種類の試作刃でケーブル切断能力を比較し、切り残しの無い刃の仕様を選定した。	PCV調査用アーム向けに選定したカッター刃の仕様と運用方法を反映する。

6.1 取り出し技術の開発計画の更新

【 2022年度の成果 2/5】

- ✓ 本事業で実施した組合せ試験に関して、下記表に示す通り位置付け・確認項目・達成目標を具体化するとともに、試験後の達成状況を評価した。【達成】
- ✓ 新たな技術課題を抽出し、開発計画を更新した。【達成】

組合せ試験項目	位置付け	確認項目	達成目標	達成状況
①アーム前半部と燃料 デブリ回収装置との組 合せ試験	燃料デブリ回収・切削装置および中性子モニターを目標位置に所定の姿勢で接近させるためのペデスタル内の操作に関して、方法・手順を検証する。これまではVRシミュレーションで検討していたが、アームの加減速や剛性に起因する振動を考慮した検証が必要なものである。	アームの振動振幅・減衰時間 燃料デブリ回収装置に取 り付けられたカメラ視認性 ワンドの操作性 所定の姿勢での目標位 置接近方法	振動振幅100mm以下 減衰時間5分以内。 カメラ映像がアーム操作 に有効であること。 アーム操作困難な作業ス テップが無いこと。 目標位置に所定の姿勢で 接近できること。	振動振幅は十分に小さく燃料デブリ回収作業への影響はほとんどなかった。 以上の理由から減衰時間は問題にならなかった。 切削粉状/円柱状デブリ回収装置のカメラは着座検知が困難であったが、荷重計の追加により解決できると判断された。 アーム操作に支障なく、所定の姿勢で接近、燃料デブリ回収ができた。
②アームとX-6ペネ模 擬体との組合せ試験	ブームリンクの展開とキャリッジの前進によって実施される取り出し用アームのX-6ペネ通過性を確認する。 ブームリンクが展開した状態でのテレスコアームから前半部の駆動による振動特性を確認する。	X-6ペネ通過性の確認 アームたわみ量の計測 アーム展開状態でのワンド動作によるテレスコアームの振動特性	10mm以上のクリアランスを確保しながら通過できること。(振動も含む)アームたわみ量が設計想定値と同等以下。振幅が30mm以内。	試験内容・判定基準の具体化を行った。 工場内検証試験は2023年4月に実施し、 アームの撓み特性に応じた制御システム の構築やレールを基準としたゼロ点調整、 多軸同時駆動のチューニングによって、 約9mmの片側を隙間を確保して通過性 が確保されることを確認した。

次ページに表の続き

6. 実施内容

6.1 取り出し技術の開発計画の更新

【2022年度の成果 3/5】

前ページの表の続き

組合せ試験項目	位置付け	確認項目	達成目標	達成状況
③エンクロージャ(ダブルドア機構)とX-6ペネ接続構造の組合せ試験	エンクロージャを現地に据え付ける際にダブルドア機構とX-6ペネ接続構造のドッキングが設計通りに行えることを確認する。特にダブルドア接続が行われる気密扉内の狭隘部には作業員が立ち入ることができないため、遠隔による非常時駆動やカメラ配置などを検証する。	ダブルドア機構とX-6ペネ接続構造のドッキング可否と手順。接続部のシール性。非常時駆動の有効性。カメラの視認性。	ダブルドア機構とX-6ペネ接続構造のドッキングが遠隔で精度良く行え、シール性が確保されること。 遠隔による非常時駆動がマニピュレータで実施可能であること。カメラによって、視野の不足なく状態監視ができること。	現地での据え付け作業に沿って、 ダブルドア機構とX-6ペネ接続構造が所定の精度でドッキングできることを確認した。また遠隔操作によるドッキングのカメラ監視性が良好であることや、撤去作業におけるモータ故障を想定した非常切り離し作業の有効性を確認した。
④エンクロージャと遠 隔輸送台車の組合せ 試験	エンクロージャに燃料デブリ収納容器 (PADIRAC)をドッキングする作業の検証、および故障時のレスキュー方法の検証を行う。	燃料デブリ収納容器のドッキング可否と手順。 故障時のレスキュー方法の有効性。	燃料デブリ収納容器を手順通り にドッキングできること。 故障時のレスキューが手順通り にできること。	エンクロージャへPADIRACをドッキングさせ、周辺エリアに問題がないことを確認した。メンテナンス検証、レスキュー検証で課題を抽出した。
⑤双腕マニピュレータ とダブルドア機構の組 合せ試験	レスキューインターフェースを備えたダブルドア機構を試作したエンクロージャに配置し、双腕マニピュレータおよび専用補助具によるダブルドア機構の復旧操作ができることを確認する。	レスキューインターフェースの 有効性。 双腕マニピュレータの専用補 助具の有効性。	双腕マニピュレータおよび専用 補助具によってダブルドア機構 の復旧操作ができること。	双腕マニピュレータの輸入見送りにより代替手段による検証を行った。手作業にて専用補助具によるダブルドア機構の復旧動作を確認した。この作業を代替マニピュレータで実施可能なことを確認した。
⑥双腕マニピュレータ とケーブル遠隔脱着機 構の組合せ試験	試作したエンクロージャ内で、双腕マニピュレータのケーブル脱着機構の動作確認を行う。双腕マニピュレータ、その専用台車およびそのレールを組合せた状態で試験を行う。	荷重負荷状態でのケーブル脱 着機構の動作。	双腕マニピュレータを搭載した 状態でケーブル脱着機構が設 計通りに着脱動作できること。	エンクロージャ内の双腕マニピュレータのレール、専用台車とのアライメント調整が重要だが、設計通りの着脱作業ができた。

6.1 取り出し技術の開発計画の更新

【 2022年度の成果 4/5】

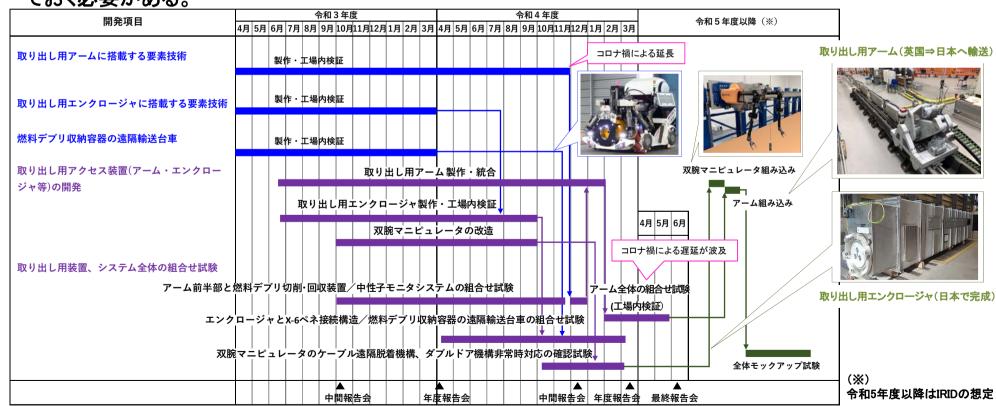
✓ アーム前半部の工場内検証試験で抽出された技術課題の対応策を開発計画へ反映した。【達成】

分類	課題	追加された対応策					
	テレスコアーム伸長速度を2mm/s以上に改善	モータの電流-トルク相関データを取得し、フィードフォワード制御に変更する。					
装置	リストカメラのプラットフォーム接触防止	Mirion社の耐放射線性カメラに変更することで接触回避可能な見通し。模擬ペデスタルを使った 検証は別途行う。					
自体	ブームリンクの展開速度を0.56deg/s以上に改善	安全制限値の見直しを行い、展開速度の向上を図る。速度アップに伴うアーム先端部の振動振幅 への影響がX-6ペネ通過性に問題ないことを確認する。					
	X-6ペネ通過性改善のための突出部のスリム化	リストカメラ本体、リストカメラブラケット、ケーブルホルダなどの突出部の形状を見直す。また双腕マニピュレータによるメンテナンス作業性が確保されるように配慮する。					
他	外付けケーブルの垂れ防止	可動プーリーの台車およびケーブル被覆の滑りを改善する。					
と の 取	外付けケーブル切断機構の切り残しの解消	ケブラー繊維なしの外付けケーブルを製作する、または外付けケーブル切断機構の刃を改良する。 PCV内部詳細調査プロジェクトでの改良刃の結果をフォローする。					
IJ	先端ツール着座時の衝撃緩和	制御盤を調整して、ワンド伸長速度の最低速を更に小さくする。					
合い	スリット開口からワンドを下降させる	ワンドの全長を315mmほど短尺化する。					
	フット着座荷重変動の要因特定	モックアップ検証においてプラットフォームの剛性をパラメータとしたデータ取得を行う。					
現	先端ツール押し付け力の変動の要因特定	アームの構造によるものか、プラットフォーム側の剛性によるものかを試験あるいは解析にて特定する。					
場 適	長期的な制御精度の経時変化の把握	着座位置の精度は複数回の繰り返し動作を行って、長期的な運用による精度の変化を把握する。 モックアップ検証を行う。					
用	フット着座なしでの先端ツール押し付け挙動 の把握	先端ツール押し付け時のフットの横移動について、着座荷重の関係を把握する。					
	アームの自動制御	多軸同時、複数ステップ連続操作が可能な機能を追加する。					

6.1 取り出し技術の開発計画の更新

【 2022年度の成果 5/5】

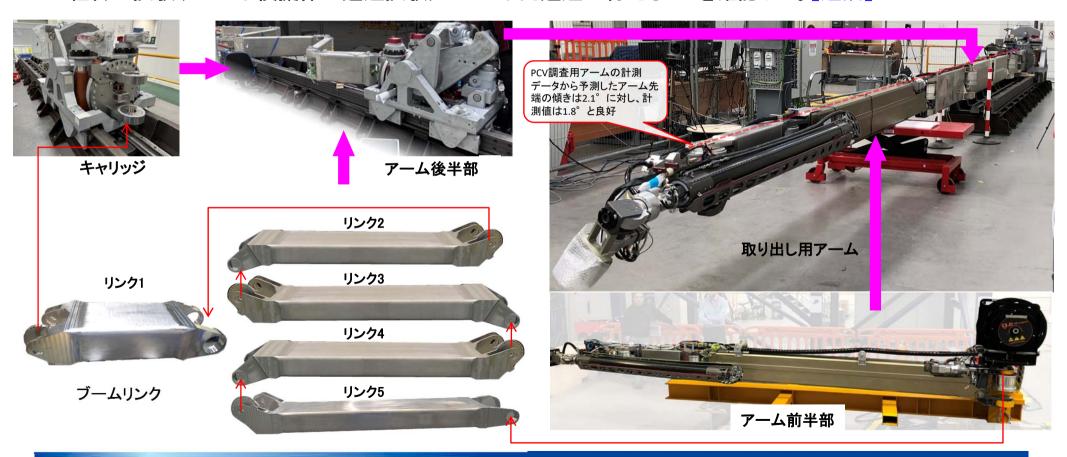
前ページの表の続き


分類	課題	追加された対応策
ア	ワンド伸長速度の低速化	切削粉状デブリ回収装置の押し付け力(約50N)の調整が容易になるよう最低速度をさらに下げる。
7	外付けケーブルの改善	中性子モニタ制御信号ケーブルを太径のものに変更し、ノイズ発生を防止する。
ダ	長期的な環境影響の確認	高精度な制御を必要とするため、現場環境下での長期的な影響による信頼性の低下について検討を行う。
機ル	安全性向上のためのイン ターロックの追加	メンテナンス作業や故障時対応などのマニュアル操作において、作業員やダブルドア機構を保護するためのインター ロックを追加する。
押ドア	システムの信頼性向上	電気系統の異常検知による自動停止が数回発生したことから、機能に影響しない範囲でシステム監視の閾値を緩和する。 また遠隔での復旧手順をシステム仕様に織り込む。
遠	PADIRACロッキング時間 短縮/運転自動化	PADIRACの付け外し作業が煩雑で時間を要する(1時間以上)ため、遠隔輸送台車への固定構造を改良し、付け外し作業を簡略化し、現場作業時間を短縮する。狭隘部通過の運転自動化で遠隔操作の負担を軽減する。
隔 輸 送	現場と制御室の連携ミス 防止	PADIRACの付け外し作業では、制御室からの遠隔輸送台車の駆動と現場作業が交互に必要になる。そのため連携による作業時間の増大や、連携ミスのリスクがあるため、現場で遠隔輸送台車を操作できる簡便な補助システムを構築する。
申	安全性向上のためのインター ロック追加/メンテナンス方 法の改善	メンテナンス作業や故障時対応などのマニュアル操作において、作業員や遠隔輸送台車を保護するためのインターロックを追加する。また床面に密着するメンテナンスを極力減らす。
ъ	双腕マニピュレータの動 作性への影響確認	本事業では双腕マニピュレータの代わりに重量・重心を模擬した模擬ウェイトを用いた。モックアップ検証では双腕マニピュレータのケーブルを結線し、遠隔脱着機構を介して動作確認を行う。
脱着機構	クロージャからの搬出作 業性の検証	本事業では双腕マニピュレータレール上での遠隔脱着を検証しているが、双腕マニピュレータのメンテナンスでは双腕マニピュレータとキャリッジを一体でエンクロージャ外へ搬出することが求められる。その作業に必要な設備との整合性をモックアップ検証で確認する。
隔	遠隔脱着の繰り返し動作 の精度検証	遠隔脱着機構単体では50回以上の脱着の信頼性を検証済みだが、双腕マニピュレータのキャリッジとレールのギャップによるアライメントのズレに対する検証を行い、定期的なギャップ解消の程度を評価する。
ツ先	ケーブル長さの調整	小石状デブリ回収装置2種類のケーブル長さ、保護管を見直し、ケーブルの余長確保と突出防止を図る。
ル端	荷重計追加	切削粉状デブリ回収装置、切削円柱状デブリ回収装置に荷重計を追加し、着座や押し付け力の検出を行う。

6.1 取り出し技術の開発計画の更新

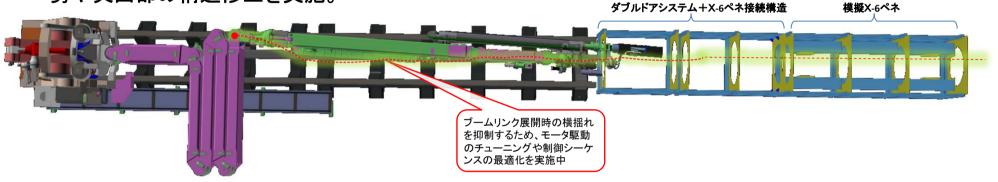
【課題】

- ✓ 取り出し用アームは英国で完成し、取り出し用エンクロージャは日本で完成するため、全体モックアップ試験による検証について、本プロジェクト後の実施を検討する必要がある。
- ✓ 取り出し用アームのX-6ペネ模擬体との組合せ試験で抽出された技術課題の対策を別途反映する必要がある。
- ✓ システム設計の概要が明確になり、システムの安全設計について最新化を行い、安全上の説明を整理しておく必要がある。



- 6.2 取り出しのための装置の開発と組合せ試験
 - 6.2.1 取り出し用アクセス装置(アーム・エンクロージャ等)の開発

【2022年度の成果(アーム)1/2】


- ✓ 英国VNS社が設計したブームリンク1~5を、ノウハウを得ながら国内製作した。【達成】
- ✓ レール及びキャリッジにブームリンクを組み立て、アーム前半部を連結した。【達成】
- ✓ 組合せ試験(X-6ペネ模擬体の通過試験)にてペネ内通過が行えることを確認した。【達成】

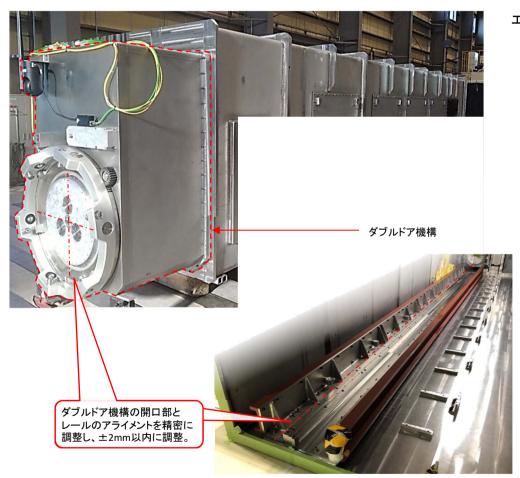
- 6.2 取り出しのための装置の開発と組合せ試験
 - 6.2.1 取り出し用アクセス装置(アーム・エンクロージャ等)の開発

【2022年度の成果(アーム)2/2】

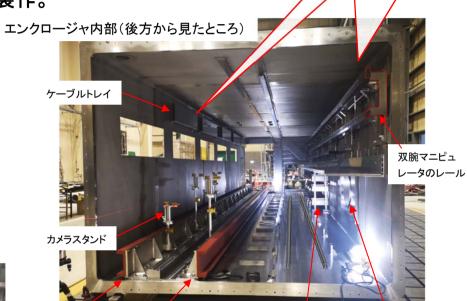
✓ 取り出し用アームのX-6ペネ通過動作のVRシミュレーション、機構解析により、接触リスク低減のための姿勢や突出部の構造修正を実施。

✓ 試験計画を策定し、試験内容および判定基準を具体化した。

No.	名称	内容	使用機材	判定基準
1	動作範囲 確認試験	ブームリンクの各関節の旋回角、キャリッジ のチルト、リフト範囲を測定する。 キャリッジの前後進範囲を測定する	内蔵レゾルバ、 巻尺等	折り畳みから全展開状態になる旋回角を有すること。 取り出し用アーム前半部の撓み、倒れ角を補正するだけのチルト(-0.5~+1.0°)、リフト(-0~+50mm)動作範囲を有すること。 キャリッジの前後進ストロークは6.6m以上あること。
2	模擬X-6ペネ 通過試験	模擬アクセスルートへ向けて取り出し用アームを展開し、通過させる。 通過後、逆方向に移動させて模擬アクセス ルートから取り出し用アームを退出させる。	カメラ、レーザ ポインタ等	ダミー先端ツールの中心軸の変位が半径25mmの円内であること。 VRシミュレーションでX-6ペネ内面との接近が予想される部位について10mm以上の隙間を確保していること。



6.2 取り出しのための装置の開発と組合せ試験


6.2.1 取り出し用アクセス装置(アーム・エンクロージャ等)の開発

【2022年度の成果(エンクロージャ 1/3)】

✓ 検証試験用エンクロージャ(本体・付属品)を計画通り製作。

取り出しアーム用レール

ツールラック

双腕マニピュレータの作業スペース を拡大するべく、双腕マニピュレータ

のレールのスリム化、ケーブルトレイの配置見直しを行った。

搬出ポート (PADIRAC連結)

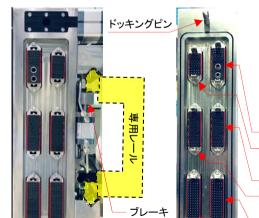
PCV内部詳細調査用エンクロージャのツールラックを改良し、スライド量を長くし、収納物の出し入れ作業が容易になるようにした。

- 6.2 取り出しのための装置の開発と組合せ試験
 - 6.2.1 取り出し用アクセス装置(アーム・エンクロージャ等)の開発

【2022年度の成果(エンクロージャ 2/3)】

✓ エンクロージャ単体での工場検査を行い、すべての検査項目で要求が満たされることを確認した。【達成】

No.	項目	実 施 内 容	結 果	判 定
1	外観検査	適切な照明などで製品表面に有害な欠陥、変形がないことを目視にて確認する。	製品表面に有害な欠陥、変形がないことを確認した。	合格
2	寸法検査	適切に校正された計測機器を用いて外寸、機器の配置寸法が 許容範囲内であることを確認する。	各寸法が許容範囲内であることを確認した。	合格
3	耐圧試験	設計圧力5.2kPa×1.2倍の圧力を減圧し、有害な変形などがないことを確認する。また、保持時間は30分以上とする。	保持時間が経過後、有害な変形がないことを確認した。	合格
4	漏えい試験	試験圧力5.2kPa×1.2倍の圧力を加圧し、フランジ部、気密バウンダリ部の溶接線に発泡液を塗布後、目視にて気泡の有無を確認する。	保持時間が経過後、気泡の発生がないこを確認	合格

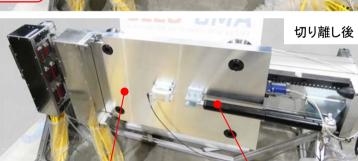

6.2 取り出しのための装置の開発と組合せ試験

6.2.1 取り出し用アクセス装置(アーム・エンクロージャ等)の開発

【2022年度の成果(エンクロージャ 3/3)】

✓ 双腕マニピュレータのケーブル遠隔脱着機構を製作し、工場試験で脱着動作を確認した。【達成】

エンクロージャ側端子箱背面



エンクロージャ側

端子箱

双腕マニピュ レータ側端子箱

双腕マニピュレータ の模擬専用台車

試験用アクチュエータ

切り離し前

カメラ+N2パージガス 専用台車(信号線+動力線)

右手(信号線) 左手(信号線)

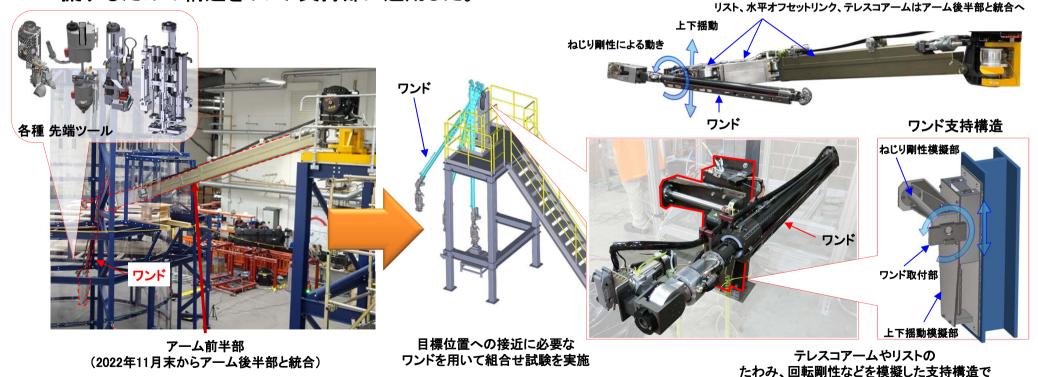
右手(動力線) 左手(動力線)_

ノイズ対策として、双腕マニピュ レータの動力線、信号線を別々 にした。

✓ 50回の脱着操作を繰り返し、539本のコンタクトピンの導通が確 保されることを確認した。【達成】

エンクロージャ側端子

双腕マニピュレータ側端子



6.2 取り出しのための装置の開発と組合せ試験

6.2.2 取り出し用装置、システム全体の組合せ試験

【2022年度の成果(アーム前半部と先端ツールの組合せ試験1/2)】

- ✓ アーム前半部を用いて、燃料デブリ切削・回収装置や中性子モニタといった先端ツールの接続、燃料デブリ接近時の挙動、遠隔作業性に関する課題を把握するための試験計画を立案した。
- ✓ 取り出し用アームの組み立て作業への影響を回避しつつ、目標位置への接近の際の主に必要となるワンドおよびツールパン&チルトを試験に用いることとした。テレスコアームなどがワンドに与える揺動などを模擬するための構造をワンド支持部に適用した。

ワンドを保持

6.2 取り出しのための装置の開発と組合せ試験

6.2.2 取り出し用装置、システム全体の組合せ試験

【2022年度の成果(アーム前半部と先端ツールの組合せ試験2/2)】

- ✓ 先端ツール(4種類の燃料デブリ切削・回収装置)とアーム前半部との組合せ試験を行い、インターフェースの改善箇所を抽出した。また、遠隔操作に重要なカメラ映像や振動状況より、燃料デブリ回収が可能なレベルであることも確認した。
- ✓ 燃料デブリ切削・回収装置運転中の中性子モニタに対するノイズレベルを測定し、中性子検出信号に対して1/10以下のレベルで、検出への影響はないことを確認した。

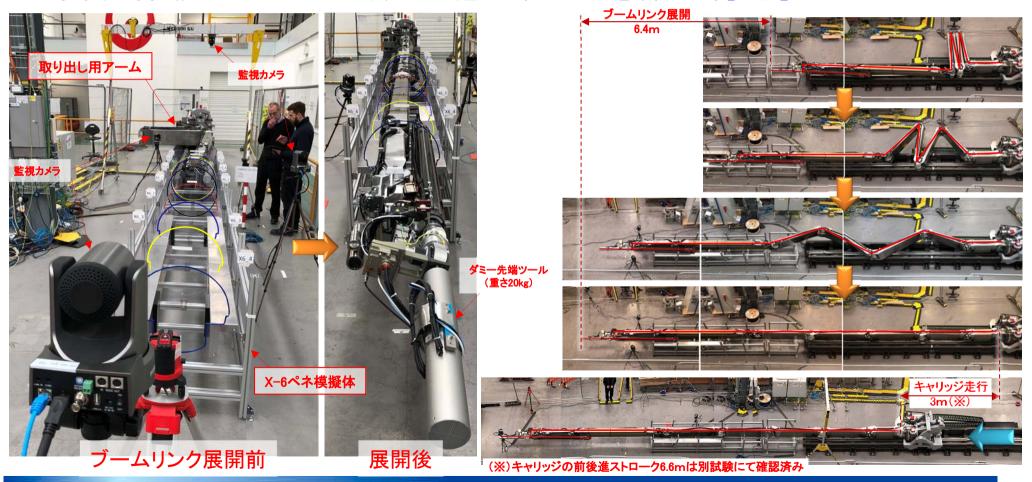
6. 実施内容

- 6.2 取り出しのための装置の開発と組合せ試験
 - 6.2.2 取り出し用装置、システム全体の組合せ試験

【まとめ(アーム前半部と先端ツールの組合せ試験)】

✓ アーム前半部のワンドを用いて燃料デブリ切削・回収装置4種と中性子モニタの機能やインターフェースの 改善点を抽出した。アーム前半部の剛性や振動は、燃料デブリの切削・回収性能に悪影響を与えることは なかった。中性子モニタのノイズレベルはSN比10以上あり、ノイズの影響は問題なかった。【達成】

評価項目	小石状デブリ回収装置 (バケット)	小石状デブリ回収装置 (フレキシブルグリッパ)	切削粉状デブリ回収装置	 切削円柱状デブリ回収装置 		
ケーブル取り合い ケーブルノイズ 固定状態	ケーブル短くて接続困難ノイズ問題なし	ケーブル飛び出し・垂れありノイズ問題なし	取り合い問題なし 切削時にカメラ映像にノイズ	ケーブル垂れあり 切削時にカメラ映像にノイズ		
四人火态						
燃料デブリ回収時間	15分以内	15分以内	約30分	約5時間(鋳鉄)		
振動の影響	影響なし	カメラ展開時にわずかに振動	カメラ展開時にわずかに振動	V字展開時にわずかに振動		
燃料デブリへのアプローチ	カメラ視認性良好	カメラ視認性良好	接地判断がカメラでは困難	接地判断がカメラでは困難		
燃料デブリへの押し付け	該当なし	該当なし	ワンド速度が速く、低荷重での押し付け調整が難しい	荷重計で調整		
故障時対応	予備モータで折り畳み可	モータ故障時の対応が課題	戻りバネで折り畳み可	戻りバネ等で折り畳み可		



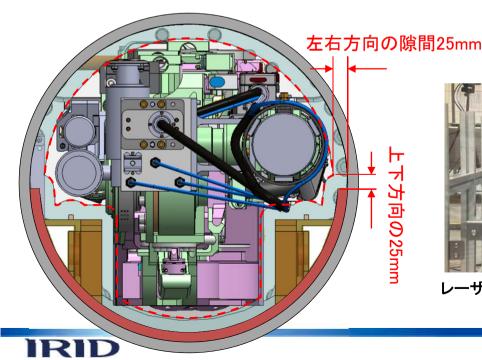
6.2 取り出しのための装置の開発と組合せ試験

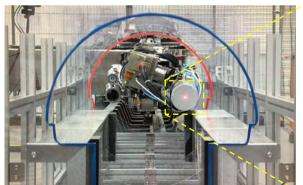
6.2.2 取り出し用装置、システム全体の組合せ試験

【2023年度の成果(アーム全体の組合せ試験)1/2】

✓ X-6ペネ通過試験を実施し、X-6ペネ通過に必要な制御システムを構築し、レールを基準にしたゼロ点調整 や多軸同時駆動のチューニングにより、ペネ内通過が行えることを確認した。【達成】

- 6.2 取り出しのための装置の開発と組合せ試験
 - 6.2.2 取り出し用装置、システム全体の組合せ試験

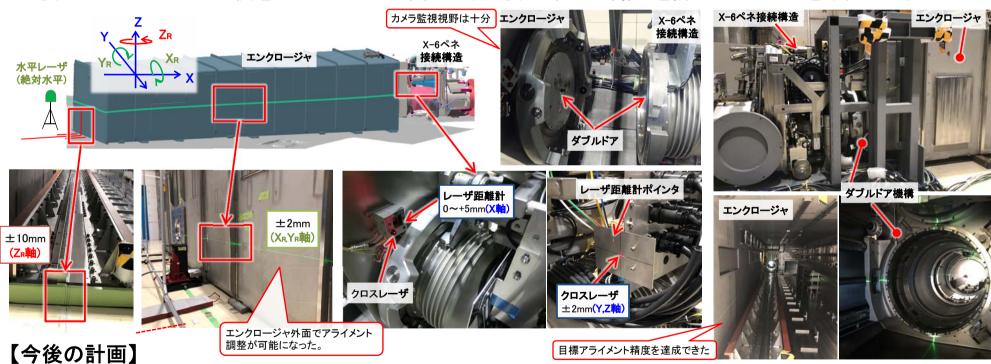

【2023年度の成果(アーム全体の組合せ試験)2/2】


✓ X-6ペネとの隙間は上下・左右に片側25mmあるため、以下の通りX-6ペネの通過性は確保される。【達成】

水平振動幅+水平位置バラツキ+多軸駆動影響+3次元計測機誤差+アライメント誤差<片側隙間

5mm(%1) + 4mm(%2) + 5mm(%3) + 0.1mm(%4) + 2mm(%5) < 25mm

- ※1 水平振動幅:レーザポインタの光点を用いた観察結果(右下写真参照)
- ※2 水平位置バラツキ:全展開状態では水平オフセットリンク先端の計測点までの全長が8.7mから12.3mに伸びるため、水平方向のバラツキはアーム先端で4mm程度のズレが生じることになる
- ※3 複数アクチュエータの同時駆動における同期ズレによる左右方向の振れ幅
- ※4 試験時にアーム姿勢の計測に使用したFaro社のVantage Laser Scannerの計測条件における誤差
- ※5 試作したエンクロージャのキャリッジレールとダブルドア機構のアライメント誤差(エンクロージャとX-6ペネのズレは考慮せず)


レーザポインタの光点は振動時においても10mm(片側5mm)の範囲内であった

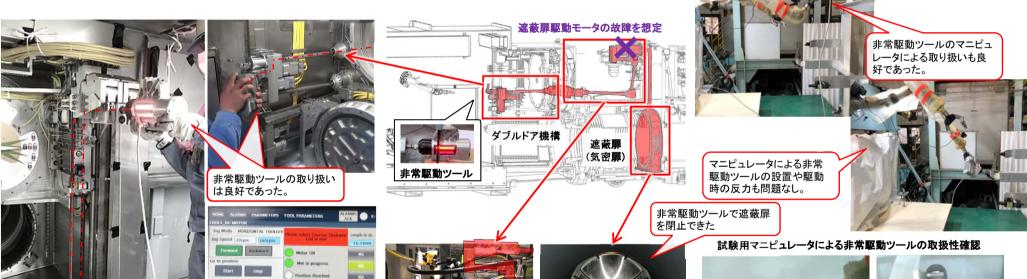
6.2 取り出しのための装置の開発と組合せ試験

6.2.2 取り出し用装置、システム全体の組合せ試験

【2022年度の成果(エンクロージャ関連の組合せ試験 1/4)】

- ✓ エンクロージャ(ダブルドア機構)とX-6ペネ接続構造の組合せ試験を行い、X-6ペネ接続構造に対して要求 精度内で据付可能であること及び、連結可能であることを確認。
- ✓ X-6ペネ接続構造との連結状態でダブルドア機構の開閉動作が行えること、離脱時にはX-6ペネ接続構造側及びエンクロージャ側をダブルドアにて閉止し、内側汚染面の露出を防止できることを確認した。

✓ 組合せ状態での一連の機能及び作業手順を確認できたため、今後はメンテナンス性向上などの実機適合性の向上や、リスク検討の深堀りを行うことになる。


6.2 取り出しのための装置の開発と組合せ試験

6.2.2 取り出し用装置、システム全体の組合せ試験

【2022年度の成果(エンクロージャ関連の組合せ試験 2/4)】

✓ ダブルドア機構の非常時対応(モータ故障)として、非常駆動ツールによるダブルドアの閉止及びX-6ペネ接続構造の遮蔽扉(気密扉)の閉止を行って、気密(要求値:0.1vol%/h)を確保できることを確認した。

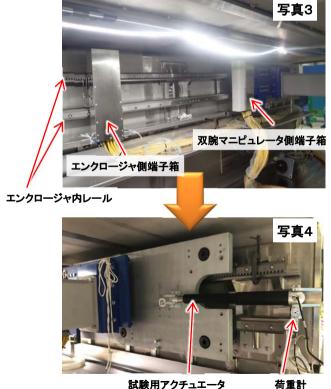
✓ 非常駆動ツールの試験用マニピュレータによる取扱性を確認した。

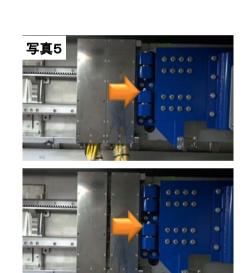
非常駆動ツールによるダブルドア機構の非常閉止

非常駆動ツール操作パネル (ダブルドア機構の制御プログラムを移植)

非常駆動軸 遮蔽扉(気密扉)

マニピュレータ搭載カメラによる視野


6.2 取り出しのための装置の開発と組合せ試験 6.2.2 取り出し用装置、システム全体の組合せ試験


【2022年度の成果(エンクロージャ関連の組合せ試験 3/4)】

- ✓ 双腕マニピュレータ専用台車を加工し、双腕マニピュレータ側端子箱を設置した(写真1、2)
- ✓ エンクロージャ側端子箱とマニピュレータ側端子箱(専用台車)をエンクロージャ内レールへ設置(写真3)
- ✓ 試験用アクチュエータを設置(写真4)、2000 N以下の力で脱着動作可能であることを確認(写真5)

写真2 双腕マニピュレータ の模擬ウェイト 双腕マニピュレータ専用台車

エンクロージャ側端子箱 双形

双腕マニピュレータ側端子箱

取り付けた双腕マニピュレータ側端子箱

6.2 取り出しのための装置の開発と組合せ試験 6.2.2 取り出し用装置、システム全体の組合せ試験

【2022年度の成果(エンクロージャ関連の組合せ試験 4/4)】

- ✓ 遠隔輸送台車の運転およびメンテナンスについて作業員のトレーニングを行い、作業要領を習得した。
- ✓ ①段差越え②狭隘部走行③エンクロージャとのドッキング等の機能・操作性に問題がないことを確認した。

7. まとめと今後の計画

- ✓ 次期開発では燃料デブリ取り出しの一連の作業を模擬したモックアップ検証へ進むことが求められる。
- ✓ これまでの検証試験で抽出された技術課題に対応するための改良に取り組むことが求められる。

実施項目		実施範囲のまとめ	達成状況	備考
取り出し用アクセス装置(アーム・エンクロージャ等)の開発	アーム	取り出し用アームを完成させた。	達成	
	エンクロージャ	取り出し用エンクロージャが完成し、各種の改良により双腕マニピュレータの作業性を改善した。	達成	
	アーム前半部と先端ツールの組合せ試験	各先端ツールの単体性能が発揮できることを確認し、インターフェース上の改善点を抽出した。	達成	
	アーム全体の組合せ試験	取り出し用アームの模擬X-6ペネ通過試験を実施した。	達成	ブームリンクの速度改善やアーム前半部のスリム化が次期開発では望まれる
システム全体の組合せ試験	エンクロージャとX-6ペネ接 続構造の組合せ試験	X-6ペネに対してエンクロージャ内のアーム用レールのアライメントが要求精度(±2mm)でドッキングできることを確認した。	達成	ダブルドア機構の異常検知が 敏感過ぎるので次期開発では 改善の余地あり
		ダブルドア機構による汚染面露出防止のシステムを確立した。	達成	
		エンクロージャを切り離す際に、モータ故障が生じた場合でもマニピュレータと非常駆動ツールで対応できることを確認した。	達成	次期開発では実マニピュレータ での検証要
		万一の遠隔輸送台車の故障を想定したレスキュー作業、メン テナンス作業、および通常運転作業について国内作業員のト レーニングを行い、それぞれ現実的な時間で実施できるレベ ルに習熟した。	達成	
	双腕マニピュレータのケー ブル遠隔着脱機構の確認 試験	ケーブル遠隔脱着機構を開発し539本のコネクタおよび2つの ガスラインを一括で脱着可能となり、エンクロージャ内のマニ ピュレータのメンテナンス性を向上した。	達成	次期開発では実マニピュレータ を結線してメンテナンス作業そ のものの検証に進むことが重要
	エンクロージャと遠隔輸送 台車と燃料デブリ収納容器 (PADIRAC)の組合せ試験	エンクロージャからの燃料デブリ搬出作業の検証を行い、走行性、ドッキング性能が設計要求通りであることを確認した。	達成	

