IRID

平成29年度補正 廃炉・汚染水対策事業費補助金 「原子炉格納容器内水循環システム構築技術の開発(実規模試験)」

2019年度実施分最終報告

2020年8月

技術研究組合 国際廃炉研究開発機構(IRID)

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning 目 次

1. 研究の背景・目的

- 2. 目標
- 3. 実施項目とその関連,他研究との関連
- 4.実施スケジュール
- 5. 実施体制図
- 6. 実施内容
- 7. 成果のまとめ

主な専門用語,略語等の説明

専門用語/略語	説明
燃料デブリ	高温となった燃料が,制御棒や原子炉圧力容器内及び原子炉格納容器内の構造物 等とともに溶け,冷えて再び固まった物質
1F	福島第一原子力発電所
RPV	Reactor Pressure Vessel:原子炉圧力容器
PCV	Primary Containment Vessel:原子炉格納容器
D/W	Dry Well:原子炉格納容器のうち,原子炉圧力容器等を格納するフラスコ型容器
S/C	Suppression Chamber: 圧力抑制室。原子炉建屋の地下階にあるドーナツ型容器
R/B	Reactor Building:原子炉建屋
AWJ	Abrasive Water Jet:切断加工能力を高めるために、ウォータージェットに 研磨材(アブレシブ)を混入させて、噴射・加工を行う工法
トーラス室	原子炉建屋の地下階に、トーラス形状(ドーナツ状)の圧力抑制室(S/C)が 配置されている部屋のこと
JAEA楢葉	日本原子力研究開発機構 楢葉遠隔技術開発センターのこと 福島第一原子力発電所の廃止措置に必要な技術開発のために設置した実証施設
液相・気相システム	汚染水・汚染空気が外部に漏れださないように閉じ込めるためのシステム
バウンダリ	境界のこと。ここでは汚染水・汚染空気を閉じ込める範囲のこと
延長配管	R/B1階床からD/W・S/C内部にアクセスする為の配管。ガイドパイプ

関連事業略称一覧

略称	事業名
工法・システム高度化PJ	燃料デブリ・炉内構造物の取り出し工法・システムの高度化
基盤技術高度化PJ	燃料デブリ・炉内構造物の取り出し基盤技術の高度化
PCV調查PJ	原子炉格納容器漏えい箇所特定技術の開発
PCV補修技術PJ	原子炉格納容器漏えい箇所の補修技術の開発
PCV内部詳細調查PJ	原子炉格納容器内部詳細調査技術の開発
PCV内部調查PJ	原子炉格納容器内部調査技術の開発
PRV内部調查PJ	原子炉圧力容器内部調査技術の開発
炉内状況把握PJ	総合的な炉内状況把握の高度化
臨界管理PJ	燃料デブリ臨界管理技術の開発
水循環PJ	原子炉格納容器内水循環システム構築技術の開発
水循環実規模PJ	原子炉格納容器内水循環システム構築技術の開発(実規模試験)
RPV/PCV腐食抑制PJ	圧力容器/格納容器の腐食抑制技術の開発
取り出し規模の更なる拡大PJ	燃料デブリ・炉内構造物の取り出し規模の更なる拡大に向けた技 術開発

1. 研究の背景・目的

事業の背景・目的

1 Fの燃料デブリ取り出しを行うにあたり、環境を整備するための液相システム、気相シス テムの開発は「工法・システム高度化PJ」で開発が行われた後、現在事業者によるエンジニア リングにて開発が進められている。関連して水循環システムにおける取水のため、現場に適用 できる P C V内へのアクセス・接続技術の開発が「水循環PJ」で進められている。本事業は、 「水循環PJ」の開発に関連し、実規模スケールでの確認、検証が必要と考えられる試験を実施 することを目的とする。

事業の概要

燃料デブリ取り出しを行う際の安全な水管理システム実現に向け,原子炉注水ライン(PCV 循環冷却)の小循環ループ化を実現するために,PCV内から直接取水するための取水部構造を 設ける事が必要である。取水部構造の閉じ込め機能や長期的な健全性,高線量環境下の現場へ の設置に向け,設計,施工,メンテナンスにおける難度の高い要求に対する技術開発を,「水 循環PJ」で進めている。

本事業において、「水循環PJ」の開発を踏まえ、S/Cを用いた水循環システム構築のための 開発技術のうち、実現性検証のために実規模スケール試験実施の優先度の高いものについて、 工場またはJAEA楢葉遠隔技術センターにおいて実規模スケールでの試験を実施する。 今年度検討の結果として、以下項目の実規模試験を実施する計画とした。

・R/B1階からS/C内へアクセスするための取水部構築技術(延長配管接続装置)の検証

・トーラス室内水循環システムバウンダリの有効性に関する確認

本報告は、2018年度~2019年度の2か年事業の成果を示す。

▶ 目標に照らした達成度(1/2)

下表の技術熟成度(以下「TRL」)の定義に基づき,実規模試験での達成時の 想定レベルを設定し,研究開発を実施する。

レベル	本事業に対応した定義	フェーズ
7	実用化が達成している段階	実運用
6	現場での実証を行う段階	フィールド実証
5	実機ベースのプロト機を製作し, 工場等で模擬環境下での実証を 行う段階	模擬実証
4	開発, エンジニアリングのプロセスとして, 試作レベルの機能試 験を実施する段階	実用化研究
3	従来の経験を応用, 組合せによる開発, エンジニアリングを進め ている段階。または, 従来経験のほとんど無い領域で基礎データ に基づき開発, エンジニアリングを進めている段階	応用研究
2	従来経験として適用できるものがほとんど無い領域の開発, エン ジニアリングを実施し, 要求仕様を設定する作業をしている段階	応用研究
1	開発, エンジニアリングの対象について, 基本的内容を明確化 している段階	基礎研究

- ▶ 目標に照らした達成度(2/2)
- 原子炉格納容器内水循環システム構築技術の開発(実規模試験)

項目	目標を判断する指標
S/C内アクセス・接続技術	接続部の遠隔施工技術について,実規模スケールでの 検証が完了し,実機での手順成立性が確認できている こと。また,実規模スケールで検証した手順を実機に 適用する際の放射性物質の閉じ込め確保,作業員の被 ばく低減について確認および課題の抽出ができている こと。 (終了時目標TRL:5)
水循環システムバウンダリ の有効性確認	S/Cシェル下端に接する程度以上にバウンダリ構成用 モルタル及び補修材を打設し、S/C及びモルタル+補 修材でトーラス室S/C内周側空間を、汚染水、燃料デ ブリ粉のバウンダリとして活用できる可能性について 実規模スケールでの試験で確認できていること。 (終了時目標TRL:5(*))

(*):実規模ベースでの補修材によるバウンダリ性能の実証を対象とし、分解調査までを実施し確認する。

3. 実施項目とその関連,他研究との関連 3.1 PJ全体の検討とホールドポイント(HP)

水循環PJ

(1) PCV内水循環システムの高度化のための技術仕様の整理, 作業計画の検討, 及び開発計画の立案

IRID

©International Research Institute for Nuclear Decommissioning

3. 実施項目とその関連,他研究との関連 3.2 他研究との関連

IRID

©International Research Institute for Nuclear Decommissioning

4. 実施スケジュール(水循環実規模PJ)

		計画(当初), 📶 :	計画(見直し後), 🛑	: 実績(2020/3末時点)
項目	2018/上	2018/下	2019/上	2019/下
PCVアクセス・接続技術の検証 (以下,内訳)	S/C水循環			
試験計画策定,準備作業等				
実規模スケールでの遠隔操作によ る施工性の確認及び課題の抽出	▶ 延長配管接続装置の実	(工場内での検証) ▼ ■	HP:要素技術開発成果	HP:要素技術 開発成果
実機工事に向けた閉じ込め確保, 作業員の被ばく低減対策の検討 及び課題の抽出			(工場内での検証) L	
接続部施工後の健全性確認				(工場内での検証) →
水循環システムバウンダリの 有効性確認	(補亻	冬材の事前確認試験(工場)) (JAEA楢葉での検証)	確認試験 分角	¥調査
主要なマイルストーン	中	▲ ▲ 間報告 中間幸	▲ 股告 中間幸	▲ 服告 最終報告
IRID			©International Research	Institute for Nuclear Decommissioning

5. 実施体制図(水循環実規模PJ)

6.実施内容 (1)PCVアクセス・接続技術等の実規模スケールでの検証

①S/C取水部構築に関する開発技術の検証

i)試験計画策定,準備作業

ii) 遠隔施工性確認試験結果及び課題の抽出

iii)接続部施工後の健全性確認

iv) 実機工事に向けた閉じ込めの確保, 作業員の被ばく低減対策の検討及び課題の抽出

(1) ① i)-1 S/C取水部構造設置施工のための技術開発スケジュール

No.12

■ S/C取水部構造の構築		:設計	⁺・機	器製作	=	:要素	試験		:機能	じ試験((プロ	▶機)		実規構	莫試験		:実績	Į
項目			201	8下			2019上				2019下							
	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
<構築関連装置の技術開発>																		
1.全体システム設計																		
2.S/C表面処理装置					机上	·検討*	*:木 く	几上検言 と判断し	すで既 ノ、IX	存技術 ジニアリン 署化・5	で応用 が段階	可 iで						
3.余盛除去装置						[検討↑	3 	大										
4.マーキング装置					₩∟₽	一	要求人	ーキング	ク内容	初設す	<u>=</u>)							
5.位置合せ装置					詳細	設計,	プロト	>機製作	≣							_		
6.隙間計測装置					机上	検討,	要素調	战験準備	Ē									
7.溶接部清掃装置のうち 表面磨き装置,溶接ビード処理装置					詳細	設計,	プロト	▶機製作	≡(表面	語き装	も しんしょう しんしゅう しんしゅ しゅう しんしゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう	几上検討	すのみ)					
8.S/C継手溶接装置					詳細	設計, 溶接	要素詞 要素詞	は験準備 験(予備	ā, プ	ロト機 :溶接約	製作 条件等の	の確認れ	よど)					
9.その他共通装置(ベースプレート,インスタレーションカートなど) <1/1パケーl組立せ試験向け実規模PJで簡易機製作>					詳細	設計,	簡易機	機製作								+		
10.ガイドリング撤去装置					机上	検討												
11.素地調整装置/塗装装置					机上	検討*												
<施工関連装置の実規模試験 :工場実施> 1/1スケール組合せ試験 (遠隔施工性の確認)							報	告範囲 ①N	0.5~	9装置	試験 記 による	2備の 遠隔施 ②溶	■記・ 第 二 性 確 移 お 修 の の の の の の の の の の の の の	製作(i 認(i 建全性研	改造) 準備含 確認(片	↓ む)	試験体 含む)	は保管

IRID

©International Research Institute for Nuclear Decommissioning

(1) ① i)-2 試験目的, 前提条件, 模擬範囲

<実規模スケール試験の実施範囲>

IRID

©International Research Institute for Nuclear Decommissioning

(1) ① i)-2 試験目的,前提条件,模擬範囲 <目的>

- S/C取水部構造の構築のうち『延長配管位置合せ ~ 延長配管-S/C表面の溶接の作業ステップ(一部前工程も含む)』を開発したプい機を用いて実規模スケールにて実施し、これまでの試験(単体機能試験、要素試験)で得られた装置への入力条件の妥当性、遠隔作業の成立性を確認・検証する。
- 実機工事に向けた閉じ込め性の確保,作業員の被ばく低減対策の検討,課題・懸案事項の抽出を行う。
- 施工した溶接部について,施工後に試験体を分解,調査し,健全性を確認する。

S/C取水部構築の作業ステップ

No.14

※1 共通装置のうち, インスタレーションカートは試験用の簡易機を使用し, ベースプレートは設置せず, インスタレーションカートを床面に溶接し固定する。 ※2 実規模スケール試験では施工完了状態を前提とし, 干渉物の撤去, 表面のマーキングや塗装剥離面状態を模擬する。

(1) ① i)-2 試験目的,前提条件,模擬範囲 <試験装置(概要)及び試験装置周りの前提条件>

延長配管の選定位置の1500mm(最大値) OR/B 1階床からS/Cまでの距離

OR/B 1階床から5/Cまでの距離 約4100mm【1F-3相当】

IRID

- R/B 1 階床
- 床面穿孔済【穿孔作業の実績あり】
- R/B1 階床 干涉物撤去済【干涉物抽出済】
- ・短時間作業に必要な除染,線量低減(10mSv/h以下)対策済

■ トーラス室

・遠隔によるトーラス室内の干渉物撤去済
 (干渉物撤去装置:FRMにより配管,ケーブルトレイ,空調ダクト,手摺等が撤去されている状態)

■ S/C内部

- PCV内滞留水の模擬はしない
- (本試験ではS/C穿孔までは実施しないこと, S/C内満水状態の 溶接条件確認は要素試験にて影響なしを確認済)

※過去「PCV補修技術PJ」で製作し、工場に保管しているS/C-ベント管実規模試験体

(1) ① i)-2 試験目的,前提条件,模擬範囲 <模擬範囲>

S/C表面

	Î.	
実規模スケール試験	実機※1	相違点
OS/C半径:4450mm	OS/C半径:4450mm	〇溶接箇所周辺材質
O厚さ:17mm	O厚さ:17mm	→母材の区分がP1材で同一で
〇材質:P1材(SM490A(溶接箇所周辺))	〇材質:P1材(ASME SA 516 Gr.70(1F-2/3))	● めるにの影響なし**2
〔SS400(上記以外) 〕	〔[JIS : SGV480相当] 〕	Oその他材質
〇表面処理状態	〇表面処理状態	→溶接箇所でないため影響なし
塗装剥離 : <u>塗装剥離後の状態から実施</u>	塗装剥離:S/C表面処理装置で施工	
【無塗装の鋼板を使用】		〇表面処理状態は各種装置によ
溶接部余盛除去 : <u>余盛除去後の状態から実施</u>	溶接部余盛除去:余盛除去装置で施工	る遠隔施工ではない(本PJでは
【段差のない鋼板を使用】		机上検討のみ)
マーキング:マーキングが完了した状態から実施	マーキング:マーキング装置で施工	→手作業にて施工後の状態を模
【手作業で施工】		擬するため,影響なし

※1 代表として1F-3を対象としている。

※2 溶接規格(JSME S NB-1-2012)要求では母材区分で決まることから同じ母材区分を使用する。Pcmは実機同等とした溶接要素試験で確認済

実規模スケール試験のS/C模擬状況

※ 供用期間中の延長配管の耐腐食性を向上するため,実機ではステンレス鋼を使用する予定

(1) ① i)-2 試験目的,前提条件,模擬範囲

(1) ① i)-2 試験目的, 前提条件, 模擬範囲

<模擬範囲>

<u>作業環境</u>

- 基本的には試験作業環境【工場内】で実施するが,かう目視,スキャン測定を使用する範囲の照度は模擬する
 R/B1階作業に係る放射線環境,作業員の装備,狭隘具合の模擬は行わない
- リンスルーでの初回となる確認試験のため、作業の完遂を優先し、作業人数・時間の厳密な指定は行わない
 実機における作業計画検討に活用するため、参考として作業人数・時間(環境データ含む)の記録を実施する
- 項目 実規模スケール試験 実機(要求仕様条件) 備考 【遠隔操作】操作本部(工場内) 【遠隔操作】操作本部(1F重要免震棟) 操作場所 【人間系作業】R/B1階床面(D本*ットフロア) 【人間系作業】R/B1階床面 温度:0℃~40℃ 試験場所環境に準ずる 温度/湿度 記録実施(1日/回) 湿度:高湿度(100%)環境 R/B1階:試験場所環境に準ずる R/B1階:照明設置 記録実施 照度 ト-ラス室:暗所環境(初層溶接まで) トーラス室 : 暗所環境 (場所・作業ステップ毎) S/C内 : 暗所環境 S/C内 : 試験場所環境に準ずる R/B1階 10mSv/h 放射線環境なし トーラス室 1Gy/h (S/C穿孔前) 放射線環境 記録実施(作業時間) (試験場所環境に準ずる) 10Gy/h (S/C穿孔後) S/C内 10Gy/h 全面マスク,防護服,ゴム手袋3重の放管 記録実施 装備 装備を着用した状態で, 搬入・組立が 放管装備の着用なし (作業時間【通常装備】) 可能であること。 記録実施 作業人数:厳密な指定は行わない 作業人数: 数名/1作業単位 人数/時間 (作業人数/時間【1作業単 作業時間:厳密な指定は行わない 作業時間:10分以内/1作業単位 位每】) 通路空間W1,200mm×H1,900mm 狭隘具合 模擬しない (想定) 水平度 実機ではレベル調整機構により $0^{\circ} \pm 0.1^{\circ}$ $0^{\circ} \pm 0.1^{\circ}$ (調整後) ベースプレートの水平度を調整する

(1) ① i)-3 試験作業フロー

No.20

- S/C表面 延長配管の位置合せ作業
 - ▶ モニタリングツールの4方位のカメラ映像を目視確認しながら隙間量が小さくなるように微調整を 繰り返す延長配管位置合せ方法(単体機能試験で確立した手順)を追加

隙間計測装置(ハンディスキャナ)

- ハンディスキャナによる3Dスキャン作業全般
 - ▶ スキャン対象の光沢の影響を避けるため,バフ掛け直後を避け,測定箇所に対し正面ではなく角度を 設けて撮影する
 - ▶ 十分なスキャンデータ採取のため,要素試験のスキャン条件(取付角度,位置)を更に拡充し,スキャン作業実施
- スキャンデータ欠損時の対応
 S/C表面のスキャンデータが欠損した場合,周辺採取データより形状補完
 延長配管下端部のスキャンデータが欠損した場合,予め取得した3Dモデルで不足範囲の位置補完
- S/C表面, 延長配管(スキャン対象)のマーキング
 S/C表面:磁石, 延長配管内面:マジック(白)のマーキングを採用

S/C継手溶接装置

● S/C表面 – 延長配管の溶接作業
 ▶ 単体機能試験で導出した溶接条件(溶接電流,溶接速度,トーチ角度,トーチ狙い位置等)を適用

- VT不合格部のグラインダによる溶接ビード形成
 - > ビード形状を整える施工方法まで確立できなかったため,実規模スケール試験では実施しない

(1) ① i)-4 試験におけるホールドポイント(HP), 判断基準

<各ステップのホールドポイント(HP),判断基準>

実規模スケール試験の使用装置
①位置合せ装置
②隙間計測装置(ハンディスキャナのみ)
③S/C継手溶接装置
④溶接ビード処理装置

(1) ① i)-4 試験におけるホールドポイント(HP), 判断基準

<各ステップのホールドポイント(HP),判断基準>

No.22

©International Research Institute for Nuclear Decommissioning

<各ステップのホールドポイント(HP), 判断基準>

No.24

※ VT判定基準:有害な割れまたはアンダーカット,オーバーラップ,クレータ,スラグ巻込み,ピットが無いこと。 ※ VT判定は試験施工担当会社の検査員資格を有する担当者がカメラ映像を映したモニタの目視により行う。

(1) ① i)-4 試験におけるホールドポイント(HP), 判断基準

<各ステップのホールドポイント(HP), 判断基準>

6. 実施内容 (1) PCVアクセス・接続技術等の実規模スケールでの検証

①S/C取水部構築に関する開発技術の検証

i) 試験計画策定, 準備作業

ii) 遠隔施工性確認試験結果及び課題の抽出

iii)接続部施工後の健全性確認

iv) 実機工事に向けた閉じ込めの確保, 作業員の被ばく低減対策の検討及び課題の抽出

(1) ① ii)-1 遠隔施工性確認試験結果

■ S/C表面レーザースキャン

S/C表面計測装置によるレーザースキャンにより, 3Dモデル作成に必要な以下の点群データを取得可能であることを確認。

延長配管の

製作・検査

(STEP3)

1)S/C表面

の計測

・S/C表面およびマーキング

・R/B床面およびX・Y・Z軸設定に必要な下げ振り, マーキング

Z軸は下げ振りで設定する予定であったが,取得できた点群データが限られており, 軸設定に用いた場合に誤差が大きくなることが想定されたことから,点群を多く 取得できたR/B1階床面を原点として,床開口内面の中心をZ軸に設定。

X軸は厚さ1mm程度のマグネットのマーキングを用いて設定。 基準に用いるマグネット端部の明確な点群データがマグネットの厚みの不足 により,取得できなかったことから端部近傍の点群をもとに設定。

Y軸はX軸とZ軸から設定。

作業はS/C表面計測装置の設置までに3時間程度,スキャン実施に15分程度

床面

R/B1階床面

(01)(01)

(1) ① ii)-1 遠隔施工性確認試験結果

2)3Dモデルの作成 開先図面の作成

No.29

S/C表面3Dモデルの作成

スキャンにより取得したS/C表面点群データよりS/C表面3Dモデルの作成を実施。 モデルの作成時間は1日~2日(8~16時間)程度。

<S/C表面の3Dモデル化手順>

 測定した点群データから、延長配管の設置位置近傍のデータを抜き出す。なお、明確な不連続 なデータを予め手動で削除しておく。

延長配管の

製作・検査

(STEP3)

- ② 点群データ全体の平均よりS/C中心軸を作成する
- ③ 中心軸を法線とする5つの基準平面を作成する
- ④ 5つの基準平面において中心軸を中心とした円(半径Ri)を作成する
- ⑤ 各円の半径Riから平均値Rを算出する
- ⑥ Rを一定値として円弧を押し出し、S/Cの3Dモデル(CADデータ)を作成する
- ⑦ データと3Dモデルの誤差が1mm以下であることを確認する

(1) ① ii)-1 遠隔施工性確認試験結果

S/C表面3Dモデル化の精度確認
 延長配管の設置位置近傍(Φ500~Φ580位置)におけるS/C表面の点群データと3Dモデルの比較(コンター図)を右図に示す。

判断基準の1mm以内に収まっていることから, モ デル化手法が妥当であることを確認。

 ・延長配管3Dモデルの作成
 S/C表面3Dモデルより,理想的な延長配管3D

 ・デルを作成する。
 ・デルの作成時間は30分程度。

(1) ① ii)-1 遠隔施工性確認試験結果

延長配管加工図面へフィードバック

延長配管3Dモデルの3次元情報をNC加工機に入力し,延長配管加工に用いる図面情報を作成。延長配管3Dモデルから算出した8方位の内側・外側 寸法は以下の通り。 延長配管寸法(方位毎)

延長配管の

製作・検査

(STEP3)

2)3Dモデルの作成

方位	0°	45°	90°	135°	180°	225°	270°	315°
外側高さ [mm]	159.5	184.9	250.8	325.9	359.5	324.9	249.1	183.3
内側高さ [mm]	162.7	187.3	250.9	322.8	354.9	321.8	249.2	185.8

■加工精度の確認

IRID

図面情報に基づき延長配管開先のNC加工を実施し、内側高さの実測寸法と 図面寸法の比較により加工精度を確認。加工時間・納期は5日程度。

延長配管下端ブロックの内径・外径加工を事前に実施し,内外径の実測値 を3D CADモデルに反映した図面情報で残りの加工を実施したことから, 目標加工精度±1.0mm以内に収まる結果となった。

延長配管の加工精度(方位毎)

方位	0°	45°	90°	135°	180°	225°	270°	315°
①実測寸法 [mm]	163.0	187.5	251.1	323.0	355.1	322.2	249.4	185.9
②図面寸法 [mm]	162.7	187.3	250.9	322.8	354.9	321.8	249.2	185.8
加工精度 (①-②) [mm]	+0.3	+0.2	+0.2	+0.2	+0.2	+0.4	+0.2	+0.1

3)延長配管の

延長配管下端部(マーキング後)

(1) ① ii)-1 遠隔施工性確認試験結果

延長配管の 製作・検査 (STEP3) 3)延長配管の 開先加工

No.32

延長配管下端部製作後のハンディスキャナでの配管全周スキャン (配管内面マーキング,エッジの取得)

配管全周のスキャンによる延長配管の隙間量測定や溶接部のDT(のど厚算定)において,要素試験と同様に延長配管下端部のエッジ(端部)のデータを取得できないことが想定された。そこで下端部加工を施した延長配管に対して,測定対象範囲の手作業によるスキャンが比較的容易なR/B搬入前に,ハンディスキャナによる配管の全周スキャンを実施し,配管内面マーキング,エッジを含めたデータを取得した。

工場内で実施可能な事前準備作業であることから,実規模スケール試験および実機の手順へ追加しても, 遠隔施工性や作業員の被ばく等への影響はない。

延長配管下端部

(1) ① ii)-1 遠隔施工性確認試験結果

■ 実物合せによる隙間量の確認

(実規模スケール試験での追加確認項目)

S/Cシェル試験体と延長配管試験体の実物合せにより隙間の実測値を計測。 目標隙間量3mmに対して,最大箇所でも1.5mmと良好な結果が得られた。 S/C表面3Dモデル作成の精度,延長配管下端部の加工精度が良好であった ことが要因と考えられる。

実物合せでの隙間実測値(方位毎)

方位	0°	45°	90°	135°	180°	225°	270°	315°
延長配管-S/C表面 隙間の実測値	0.5	1.5	1.0	1.2	0.5	0.8	1.2	1.0

9

4)延長配管

の製作

No.33

実物合わせ状況(0~90°)

■延長配管の製作

延長配管下端部と下部-中間部-上部一体の延長配管を溶接し,実規模ス ケール試験用の延長配管を製作。

製作完了後, R/B1階床面模擬フロアの床穴より延長配管を投入実施。

延長配管(下端部), S/Cシェル

IRID

延長配管の

製作・検査

(STEP3)

3)延長配管の

開先加工

延長配管投入状況

延長配管(全体)

(1) ① ii)-1 遠隔施工性確認試験結果

■ 位置合せ装置の設置

延長配管を仮設支持材により床面に固定した状態で,位置合せ装置のうち,位置決めツール設置ならびに位 置合せ装置での延長配管の支持までの作業を実施。

延長配管仮固定状況

ハンディスキャナ, 治具外観

IRID

位置決めツール吊上げ状況

位置決めツール設置状況

ハンディスキャナでの配管全周スキャン(延長配管のずれ量取得) 延長配管のずれ量取得のためにハンディスキャナを試験用治具にて投下し、延長配管下端部-S/C表面間の 配管内全周のスキャンを実施。測定対象範囲のスキャンが可能なことを確認。

スキャン実施状況(PC画面)

スキャンデータ(90°方向)

©International Research Institute for Nuclear Decommissioning
延長配管とS/C 表面の位置合せ (STEP4) 2)延長配管の ずれ量取得

No.36

■ 延長配管ずれ量算定

スキャンデータを用いて以下の手順により延長配管のずれ量を算定。

上記のずれ量算定結果より求めた延長配管の移動量は以下の通り

なお,実規模スケール試験の追加項目として延長配管外側からの実測値によりずれ量を算定し,両者の比較を実施する計画であった。しかし,同様手順(位置合せ装置の単体機能試験時)でのすれ量算定値に誤差が大きい結果であった知見を考慮し,実測によるずれ量算定は困難(妥当な算定結果を得ることが出来ない)と判断し,本手順を取りやめた。

(1) ① ii)-1 遠隔施工性確認試験結果

延長配管とS/C 表面の位置合せ (STEP4)

3)位置合せ

No.37

■ S/C表面 – 延長配管の位置合せ

位置合せ装置のうち,モニタリングツールを延長配管内に設置。モニタリングツールでS/C表面 – 延長配管の 隙間量を視認可能な状態で位置決めツールを操作し,以下の手順で延長配管の位置合せを行い,位置合せ実施 後にモニタリングツールでの配管全周隙間量の分布確認及び隙間量の実測(外側)を実施。

①ずれ量算定値による位置合せ

②モニタリングツールのカメラ映像での微調整による位置合せ【単体機能試験で確立した手順(反映事項)】 確認完了後,モニタリングツールの撤去を実施。

下記の通り,手順①で隙間量5mm以内は満足したが,単体機能試験で確立したカメラ映像での微調整による 位置合せで隙間量の更なる低減が可能なため,溶接施工品質の向上を目的に手順②で位置合せを実施。隙間 量2mm以内【実測値】の良好な結果が得られた。

手順①では更なる改善による高精度化が困難であること,手順②の位置合せ精度・再現性が高いことから, 手順①は割愛し,手順②のみで位置合せを実施することが合理的と考える。

	方位	位置合せ実施前	①ずれ量算定値による位置合せ 実施後の隙間量【実測値】	②カメラ画像での微調整による位置合せ 実施後の隙間量【実測値】
	0	-	4.2mm	1.1mm
	90°	-	2.7mm	1.6mm
	180°	-	4.0mm	1.3mm
	270°	-	4.8mm	1.4mm
Eニタリングツール	モニタ リング ツール 画			

位置合せ実施後の隙間量(方位毎)およびモニタリングツール画面

©International Research Institute for Nuclear Decommissioning

(1) ① ii)-1 遠隔施工性確認試験結果

延長配管とS/C 表面の位置合せ (STEP4)

4)溶接部の 隙間計測

No.38

ハンディスキャナでの配管全周スキャン(溶接部の隙間量算定) 溶接部の隙間量計測のためにハンディスキャナを試験用治具にて投下し、延長配管下端部-S/C表面間の配 管内全周のスキャンを実施。要素試験で確認されたスキャン結果と同様に隙間量算定に用いる「延長配管下 端のエッジ(端部)」を確認できるスキャンデータが取得できず、また、S/C表面でも広い範囲でスキャン データ取得が出来なかった。

延長配管-S/C表面間隙間量

要素試験時と同様に延長配管下端のエッジ(端部)を確認できるスキャンデータが取得できなかった要因は, スキャンした画像データを高速で処理し,データ同士を重ね合わせることで被写体の形状を正確にキャプ チャし3Dモデルを構築するハンディスキャナの特性と,延長配管内での限られた動作でのスキャン可能範 囲では、少ない隙間量の場合、明確にエッジを捉えることが困難であったことと考えられる。 また、実規模スケール試験用の手動の治具ではスキャン位置・方向・走査速度の微調整が困難であったこと も要因である。(遠隔操作により並進・回転させる装置を導入することでスキャン可能範囲の改善が見込め る。)

このため当初手順であるスキャンデータから3Dモデルを作成し、3Dモデル上で延長配管下端部とS/C 表面間に垂線を引いて隙間量を算定する手順に替えて、要素試験時の知見を踏まえたスキャンデータで取得 した延長配管内面マーキングとS/C表面データ、及び事前スキャンで取得した延長配管下端部のスキャン データを用いる手順(次項参照)で隙間量を算定する手順とした。

延長配管とS/C 表面の位置合せ (STEP4)

4)溶接部の 隙間計測

No.39

ハンディスキャナでの配管全周スキャン(溶接部の隙間量算定) S/C表面-延長配管の隙間量算定手順

実規模スケール試験の追加項目として延長配管外側からの実測による隙間量を測定し、本手法による隙間量の算定精度の確認を実施。算定値と実測値の差は最大1.2mmであった。

方位	隙間量 【実測値】	隙間量 【3Dモデルによる算定値】
0	1.1mm	0.4mm
90°	1.6mm	1.2mm
180°	1.3mm	0.6mm
270°	1.4mm	0.2mm

隙間量の実測値と算定値の比較(方位毎)

IRID

©International Research Institute for Nuclear Decommissioning

(磨き・吸引)

No.41

溶接前清掃(溶接施工部の浮き錆除去)

溶接ビード処理装置を延長配管内に設置し、カメラ映像を確認しながらツール位置を調整して溶接施工部の 浮き錆除去を実施。カメラ映像を確認しながらの装置軸の調整にて鞍型の形状に合わせてバフツールによる 磨き作業が可能なこと,問題なく浮き錆が除去可能なことを確認。

磨き完了後、溶接ビード処理装置の撤去を実施。

バフ処理で発生したゴミの吸引※は手作業(延長配管上部より吸引装置および治具)で実施。 (以降の作業での磨きに伴うゴミ吸引の作業は同様に実施)

※ 遠隔施工で使用する配管内清掃装置(吸引)は既存技術流用で対応可能な見込みのため, エンジニアリングで対応する(本PJ開発対象外)

(1) ① ii)-1 遠隔施工性確認試験結果

ハンディスキャナでの配管全周スキャン(溶接前の隙間量算定)

「溶接前清掃後の溶接部の隙間量計測」および「溶接部のDT(のど厚計測)に用いる溶接前スキャンデータの 取得」のためにハンディスキャナを試験用治具にて投下し、延長配管下端部-S/C表面間の配管内全周のス キャンを実施。位置合せ実施後のスキャン時と同様に隙間量算定に用いる「延長配管下端のエッジ(端 部)」が確認できるスキャンデータが取得できなかった。また、S/C表面でも広い範囲でスキャンデータ取 得が出来なかった。

このため、位置合せ実施後の隙間量算定と同様の手順で隙間量の算定を実施。また、エッジを確認できない ことから溶接前スキャンデータと溶接後スキャンデータの比較によりDT(のど厚算定)することが出来ないた め、DTは要素試験結果を踏まえて当初手順の代替案として検討した手順へ変更して実施することとなった。

実規模スケール試験の追加項目として延長配管外側からの実測による隙間量を測定し,隙間量の算定精度の 確認を実施。

溶接ビード処理装置での清掃実施前後で実測値を比較することにより, 磨き作業による位置合せ実施後の隙 間量への影響を確認。

スキャンデータ(90°方向)

(1) ① ii)-1 遠隔施工性確認試験結果

ハンディスキャナでの配管全周スキャン(溶接前の隙間量算定)
 【考察】

- 溶接前清掃による隙間量の変化
 溶接前清掃後と位置合せ実施後(溶接清掃前)の隙間量【実測値】を比較すると,隙間量が平均
 0.35mm (最大で0.5mm)狭くなる傾向が確認された。変化量は微小であり,隙間の分布も大きく変わらないため溶接ビード処理装置での清掃によって,隙間量が変動するリスクは少ないと評価。
- 3Dモデルによる算定値と実測値の差異
 溶接前清掃後の隙間量の3Dモデルによる算定値と実測値,位置合せ実施後隙間量の3Dモデルによる算定値と実測値をそれぞれ比較すると,最大で1.2mmと大きな差異が生じた。
 スキャンにより生じる誤差等を隙間量算定手順で実施する「S/C表面3D-CADモデル作成時のデータ不足箇所の補完処理」と「延長配管内面マーキング位置情報の重ね合わせによる延長配管下端のエッジ位置の特定」のデータ処理で増幅してしまっていることが要因であることが考えられる。
- 3Dモデル算定値同士での隙間分布の差異
 溶接前清掃後と位置合せ実施後(溶接清掃前)の隙間量【3Dモデルによる算定値】を比較すると,隙間の分布が異なる。これも3Dモデルによる算定値と実測値の差異と同様の要因と考えられる。

方位	溶接前	清掃後	【参考】位置合せ実施後		
	隙間量 【実測値】	隙間量 【3Dモデルに よる算定値】	隙間量 【実測値】	隙間量 【3Dモデルに よる算定値】	
0	0.9mm	0.2mm	1.1mm	0.4mm	
90°	1.1mm	0.2mm	1.6mm	1.2mm	
180°	0.9mm	0.4mm	1.3mm	0.6mm	
270°	1.1mm	1.9mm	1.4mm	0.2mm	

隙間量の実測値と算定値の比較(方位毎)

(1) ① ii)-1 遠隔施工性確認試験結果

■ 仮付け溶接

S/C継手溶接装置を延長配管内の装置固定位置の目印としたマーキングまでカメラで確認しながら降下し、 クランプ機構で装置を固定し、カメラ映像により溶接対象箇所(全周)の溶接前確認を実施。

その後,カメラ映像を確認しながらトーチを遠隔手動操作して狙い位置にワイヤを接触させてティーチング を実施。

トーチを溶接開始箇所まで移動し,ティーチング指示値に基づき90°, 270°方位に長さ30mm程度の仮付け 溶接を実施。

(1) ① ii)-1 遠隔施工性確認試験結果

本溶接(1パス目)

前項の仮付け溶接に引き続き, 「カメラ映像による溶接対象箇所(全周)の溶接前確認」→「ティーチン グ」を実施。ティーチング完了後,指示値に基づきトーチを動作(空運転)させて,トーチ先端軌道をカメ ラ映像で狙い位置と異なっていないか確認。

溶接

(STEP5)

3)溶接

その後、トーチを溶接開始箇所まで移動し、ティーチング指示値に基づき1パス目の本溶接施工を実施。 溶接完了後,溶接ビード処理装置との入れ替えのためにS/C継手溶接装置の撤去を実施。

(カメラ映像)

IRID

(カメラ映像)

溶接部スラグ除去(1パス目) 溶接前清掃と同様に溶接ビード処理装置を延長配管内に設置し、カメラ映像を確認しながらツール位置を調 整して溶接部のスラグ除去を実施。問題なくスラグが除去可能なこと, 溶接作業を継続できない溶接不良 (割れ,ビード形状不良)がないことを確認。

©International Research Institute for Nuclear Decommissionin

3)溶接

溶接

(STEP5)

No.46

■ 位置合せ装置の撤去

延長配管を仮設支持材により床面に固定して位置決めツールの撤去を実施。

仮設支持材による固定 位置合せ装置撤去状況 ■ 本溶接,溶接部清掃(2パス目~8パス目) 前項と同様に溶接~磨き作業を繰り返し実施。問題なく8パス目まで溶接施工可能なことを確認。

4パス目溶接完了後 (カメラ映像) 8パス目溶接完了後 (カメラ映像)

単体機能試験STEP3(その2)条件と変更なし

溶接電流	: 270A(設定値), パルス有り
ワイヤ突き出し長さ	: 15mm
溶接速度【下表参照】	: 20cm/min~30cm/min
トーチ角度【下表参照】	: 45°~60°
トーチ狙い位置	: 下図参照

対象	層数	パス数	パス数 溶接 溶接速度 トー・		トーチ	トーナ? 位置 [,])日し *3	
		/ \/\\	方向*1	(cm/min)	角度(°)*2	狙い基準	X	
	1	1	-	25	45	1	0	
	2	2	-	25	45	2	0	
	2	3	-	25	45	3	0	
	2	4	-	25	45	4	0	
Щ	3	5	-	25	45	5	0	
	3	6	-	25	45	6	0	
	3	7	-	25	45	7	0	
	3	8	-	25	45	8	0	
	1	1	下進	30	45	1	0	
	2	2	上進	20	45	2	0	
	2	3	下進	30	45	3	0	
\pm	2	4	上進	20	45	4	0	
12	3	5	下進	30	45	5	0	
	3	6	上進	20	45	6	0	
	3	7	下進	30	45	7	0	
	3	8	上進	20	45	8	0	
	1	1	-	25	60	1	0	
	2	2	-	25	60	2	0	
	2	3	-	25	60	3	0	
公	2	4	-	25	45	4	0	
. []	3	5	-	25	60	5	0	
	3	6	-	25	60	6	0	
	3	7	-	25	60	7	0	
	3	8	-	25	45	8	0	
	1	1	上進	20	45	1	0	
	2	2	下進	30	45	2	0	
	2	3	上進	20	45	3	0	
ŧ	2	4	下進	30	45	4	0	
1	3	5	上進	20	45	5	0	
	3	6	下進	30	45	6	0	
	3	7	上進	20	45	7	0	
	3	8	下進	30	45	8	0	

IRID

No.47

*2:トーチ角度は溶接狙い位置の溶接トーチと水平線の角度を示す 延長配管模擬体 溶接トーチ S/C模擬体 -----水平線

*3: トーチ狙い位置は狙い基準からX方向へのずれを示す

※ VT判定基準:有害な割れまたはアンダーカット,オーバーラップ,クレータ,スラグ巻込み,ピットが無いこと。 VT判定は試験施工担当会社の検査員資格を有する担当者がカメラ映像を映したモニタの目視により行う。

定手順を変更

■ 溶接部検査(VT)

S/C継手溶接装置のカメラ映像を表示したモニタの目視にて溶接部最終層のVTを実施。 オーバーラップとアンダーカットとみられる部位が以下の箇所で認められた。

オーバーラップ:288°付近 溶接ビード部, 294°付近 溶接線下側止端部, 356°付近 溶接線凹み部 アンダーカット: 18°付近 配管側止端部

VT判定基準:有害な割れまたはアンダーカット、オーバーラップ、クレータ、スラグ巻込み、ピットが無いこと

VT状況【288°方位】 (カメラ映像)

VT状況【356°方位】 (カメラ映像)

VT状況【18°方位】 (カメラ映像)

溶接部処理(グラインダによるVT不合格箇所の研削)

VTにて不合格箇所があった場合には、溶接ビード処理装置のツールをグラインダツールに換装し、グラインダツールでVT不合格箇所の処理を行う手順であったが、単体機能試験でグラインダツールによる研削の施工方法を確立できなかった*ことからVT不合格部の処理は実施せず、次手順へ。

※水循環PJ (2)②2)-9 単体機能試験(STEP3(その2)) VT不合格部のグラインダによる溶接ビード形成 参照

(1) ① ii)-1 遠隔施工性確認試験結果

■ 溶接部検査(DT)

溶接部のDT(のど厚計測)に用いる溶接後スキャンデータの取得のためにハンディスキャナを試験用治具にて投下し,延長配管下端部-S/C表面間の配管内全周のスキャンを実施。測定対象範囲のスキャンが可能なことを確認。

溶接後はスキャンを阻害するS/C, 延長配管表面の光沢が少なくなっていることから, その他のスキャン時と 比較してデータの抜けが少なく, スキャンデータを取得可能であった。

スキャンデータ(90°方向)

なお,溶接前スキャンデータで「延長配管下端のエッジ(端部)」が確認できるスキャンデータを取得できな かったため,要素試験結果を踏まえて当初手順の代替案として検討した手順(次項参照)でのど厚の算定を実 施。

(1) ① ii)-1 遠隔施工性確認試験結果

溶接 7)溶接部検査 (STEP5) DT(溶接後)

■ 溶接部検査(DT)

接続部施工後の健全性確認として実施する断面マクロ観察の実測値と算定値を比較し,のど厚の算定精度の 確認を実施。算定値と実測値の差は最大1.0mmであった。のど厚算定手順はすべてケース2-2であり,溶接 後のスキャンデータのみでのど厚算定が可能であった。これにより誤差要因となり得る2つのスキャンデー タの補完処理による誤差の増幅を最小限に留めることが出来たこと,スキャンデータの抜けも少なかったこ とから,のど厚を精度よく算定可能であったと考える。

のど厚の実測値と算定値の比較(方位毎) ※ 0.5mm未満を切り捨て処理

方位	のど厚 【3Dモデルによる算定値 [※] 】	のど厚 【断面マクロによる実測値※】	差異 (算定値-実測値)
0	15.0mm	15.0mm	+0.0mm
90°	17.0mm	17.5mm	-0.5mm
180°	19.0mm	20.0mm	-1.0mm
270°	17.0mm	18.0mm	-1.0mm

(1) ① ii)-1 遠隔施工性確認試験結果

プロト機を用いた試験作業における作業時間,人数

		作業時間合計(作業単位合計 ^{※1})				
手順	遠隔/手作業	位置決めツール設置	位置合せ (モニタリングツール設置・撤 去含む)	位置決めツール撤去		
位置合せ装置	遠隔操作に よる作業	-	32分(3)	-		
による位置合せ	人間による 手作業 ^{※ 2}	19分(6)	9分(4)	39分(2)		

※1 各項目の作業単位の合計数を示す。 作業単位の例.延長配管仮固定,位置決めツールの撤去の2作業単位(位置決めツールの撤去) ※2 設置に掛かる準備作業,撤去後の片付け作業を除く「装置の設置,投下・固定,回収,撤去等」を示す。

作業人数(遠隔操作による作業除く)

・位置決めツール設置:2~3人

(上記人数以外の箇所は,位置決めツールの吊上げ〜固定:5人,延長配管フランジー位置決めツールのボルト固定:1名)

- ・モニタリングツール設置:2名
- ・位置合せ:遠隔操作による作業のみ
- ・モニタリングツール撤去:2~3名
- ・位置決めツール撤去: 2~4名
- 要求事項としていた1作業単位「作業人数:数名」,「作業時間:10分以内」を概ね満足することを確認。位置決めツールの撤去は,要求事項の10分以内を超えたことから,吊り治具の改良や固定箇所の取り外し簡略化,手順の簡素化等が必要と考える。
- 実機では設置に掛かる準備作業や撤去後の片付け作業等が加わることから、さらに作業時間が増加する ものと想定される。

プロト機を用いた試験作業における作業時間,人数

千順	遠隔/手作業	作業時間合計(作業単位合計 ^{※1})				
- 7-// <u>A</u>		仮付け	1パス目	2パス目	3パス目	4パス目
S/C継手溶接装置	遠隔操作に よる作業	15分(3)	37分(4)	41分(5)	43分(5)	36分(5)
による溶接作業	人間による 手作業 ^{※ 2}	1時間48分 (2)	22分(2)	43分(4)	17分(4)	20分(4)

壬順	清隔/壬作 类,	作業時間合計(作業単位合計*1)				
- 3 -7/10,	述附/ 丁TF未	5パス目	6パス目	7パス目	8パス目	VT
S/C継手溶接装置	遠隔操作に よる作業	1時間1分 (5)	39分(5)	36分(5)	34分(5)	18分(1)
による溶接作業	にる溶接作業 人間による 手作業 ^{※2}	20分(4)	25分(4)	19分(4)	18分(4)	13分(4)

※1 各項目の作業単位の合計数を示す。 作業単位の例. S/C継手溶接装置の 設置,投下・固定,回収,撤去の4作業単位(VT) ※2 設置に掛かる準備作業,撤去後の片付け作業を除く「装置の設置,投下・固定,回収,撤去等」を示す。

作業人数(遠隔操作による作業除く) 仮付け:2~3人 1パス目:2人 2パス目~VT:3人

要求事項としていた1作業単位「作業人数:数名」,「作業時間:10分以内」を概ね満足することを確認。 仮付け溶接での最初の装置の投下・固定において,装置芯出し作業に苦戦し,1時間40分程度の時間を要 した。作業習熟に伴い作業時間は短縮されたが、手順全般では装置投下・固定時の装置芯出し作業が容易 ではなく、要求事項の10分以内を超える時間を要していることから実機適用に向けて改良が必要。

> 実機では設置に掛かる準備作業や撤去後の片付け作業等が加わることから、さらに作業時間が増加するものと想定される。

(1) ① ii)-1 遠隔施工性確認試験結果

プロト機を用いた試験作業における作業時間,人数

千唇	遠隔/手作業	作業時間合計(作業単位合計※1)				
于順		浮き錆除去	1パス目	2パス目	3パス目	4パス目
溶接ビード処理装 置による磨き作業	遠隔操作に よる作業	41分(2)	33分(3)	26分(3)	32分(3)	48分(3)
	人間による 手作業 ^{※2}	17分(4)	14分(4)	17分(4)	14分(4)	11分(4)
千川西	"告喧 /千作类	作				
于/ig		5パス目	6パス目	7パス目	8パス目	
溶接ビード処理装 置による磨き作業	遠隔操作に よる作業	33分(3)	44分(3)	39分(3)	1時間44分 (3)	
	人間による 手作業 ^{※ 2}	14分(4)	25分(4)	11分(4)	15分(4)	

※1 各項目の作業単位の合計数を示す。 作業単位の例. 溶接ビード処理装置の 設置,投下・固定,回収,撤去の4作業単位(浮き錆除去) ※2 設置に掛かる準備作業,撤去後の片付け作業を除く「装置の設置,投下・固定,回収,撤去等」を示す。

作業人数(遠隔操作による作業除く) 浮き錆除去~8パス目:3人

- 要求事項としていた1作業単位「作業人数:数名」,「作業時間:10分以内」を概ね満足することを確認。6パス目では装置投下中にケーブル配置の修正を実施したことから,要求事項の10分以内を超えたる作業時間を要した。
- > 実機では設置に掛かる準備作業や撤去後の片付け作業等が加わることから、さらに作業時間が増加する ものと想定される。

(1)① ii)-2 課題の抽出対応方針の凡例A: 実規模スケールによる検証が必要
B: 工場での要素試験で検証可能

C: 工事に向けたエンジニアリングの中で調整・解決が必要

No.56

No.		分類	課題および対応方法	対応方針
1	延長配管の 製作・検査	S/C表面の計測	・座標系の定義に用いる適切なマーキング等の選定 ⇒下げ振りと厚さ1mm程度のマグネット(マーキング)では、位 相差方式でスキャンする装置の特性上から取得できた点群データ が少ないため、実機では下げ振りの代わりにZ軸を設定に使用す る箇所の検討や点群データを多く取得できる十分な厚さがある マーキングを使用することが必要。	С
2		延長配管の ずれ量取得	 ・スキャンデータの抜け・乱れの解消 ⇒ハンディスキャナの可動範囲(撮影可能範囲)の改良および遠隔 化を行い、データの抜け・乱れを解消する。 ・ずれ量算定方法の改善 ⇒ずれ量の算定精度向上のため、算定要領の見直しを行う ※モニタリングツールによるカメラ目視により、+分な精度で位置合せが 可能であったため、ずれ量算定のためのハンディスキャナによるスキャン作業は手順削除することも視野に入れる。 	С
3	延長配管と S/C表面の位 置合せ	位置合せ	 ・位置合せ装置が高く、他装置投入時に干渉する ⇒構成機器・部品のレイアウト変更などにより、投入装置との干渉を回避する ・位置決めツール設置、撤去時間の短縮化 ⇒現場でのケーブル接続箇所を最小限とすることで、現場作業時間を短縮する、または作業性の良い仮設支持材の構造を検討する 	С
4		溶接部の 隙間計測	 ・延長配管の端部のデータを取得できない ・隙間量算定方法の改善 ⇒ハンディスキャナの可動範囲(撮影可能範囲)の改良および遠隔 化を行い,データの抜け・乱れを解消する ※溶接前の隙間確認に対する要求レベルを緩和し、より確実な方法で隙間 量の良否判断を行い、溶接作業を開始する手順への変更も視野に入れる 	С

IRID

-	1) ①	ii)-2 課	題の抽出	対応方針の凡例 A: 実規模スケールによる検証が必要 B: 工場での要素試験で検証可能 C: 工事に向けたエンジニアリングの中で調整	No.57 登・解決が必要
	No.		分類	課題および対応方法	対応方針
	5	延長配管- S/C表面の溶 接	溶接	 ・ワイヤ曲がりによる狙い位置のずれ ⇒トーチケーブルが溶接装置の中心を通るように配置を見直し,溶接時の装置回転によるねじれの影響を軽減する ・ケーブル干渉によるカメラ位置のずれ ⇒ケーブル配置およびマネジメント方法を改善する。 ・パス毎の溶接不良部の補修溶接の施工方法の確立 ⇒補修施工方法の検討,専用施工ツールの開発(現状装置改良) ・溶接部表面の結露対策の確立 ⇒溶接前に延長配管内を乾燥空気を供給,S/C継手溶接装置の シールドガス噴射などにより結露除去等 ・ワイヤ固着の復旧方法の確立 ⇒ワイヤ固着した状態でS/C継手溶接装置の引上げ,ワイヤを切断・引抜き後(一部遠隔作業を予定),当該部のビード成形・補修溶接 ・装置搬入・昇降・撤去作業の作業員被ばく低減対策 >実規模スケール試験結果を踏まえ,エンジニアリングで作業人数・時間の短縮化,更なる人力から遠隔化の検討 ・装置搭載カメラで明確に判定するための画質の更なる向上 ⇒オートフォーカス付きカメラなどへ変更(現状装置改良)または,カメラおよび照明配置の見直し・改善 ・溶接中のヒューム飛散対策 ⇒施工中,延長配管頂部に閉止蓋設置+吸引など ・オーバーラップ発生防止対策 ⇒S/C継手溶接装置へのウィービング機能の実装 必要に応じ溶接条件(電流・電圧・溶接速度)の見直し 	C

IRID

©International Research Institute for Nuclear Decommissioning

1) ① ii)-2 課題の抽出			対応方針の凡例 A: 実規模スケールによる検証が必要 B: 工場での要素試験で検証可能 C: 工事に向けたエンジニアリングの中で調整	No.58 Let No.58
No.		分類	課題および対応方法	対応方針
6	延長配管 – S/C表面の溶 接	 ○□の溶 (グラインダ) ・VT不合格部のグラインダ(砥石)による溶接ビード形状を整える施工方法の確立 →砥石形状の変更(現状装置改良) →改良グラインダツール形状でのビード形状成形の手順確立 ・ビード処理によるダスト飛散対策の確立 →施工中,延長配管頂部に閉止蓋設置 ・装置搬入・昇降・撤去作業の作業員被ばく低減対策 →実規模スケール試験結果を踏まえ,エンジニアリングで作業 数・時間の短縮化,更なる人力から遠隔化の検討 ・パス毎の溶接不良部の除去・ビード形成の施工方法の確立 ・状体体ですさきの検討 		С
7		溶接部検査 DT(溶接前後)	・延長配管の端部のデータを取得できない ・のど厚算定方法の改善 ⇒ハンディスキャナの可動範囲(撮影可能範囲)の改良および遠隔 化を行い,データの抜け・乱れを解消する ※溶接前の隙間確認に対する要求レベルを緩和し、より確実な方法で隙間 量の良否判断を行い、溶接作業を開始する手順への変更も視野に入れる	С

IRID

6. 実施内容 (1) PCVアクセス・接続技術等の実規模スケールでの検証

①S/C取水部構築に関する開発技術の検証

i) 試験計画策定, 準備作業

ii) 遠隔施工性確認試験結果及び課題の抽出

iii)接続部施工後の健全性確認

iv) 実機工事に向けた閉じ込めの確保, 作業員の被ばく低減対策の検討及び課題の抽出

IRID

(1) ① iii)-1 接続部施工後の健全性確認

- ■耐圧・漏えい試験
- 下記条件にて耐圧試験を実施し,「試験圧力に耐え,過度な変形が無いこと」を確認 加圧媒体:空気, 試験圧力:0.11MPa以上, 圧力保持時間:10分以上
- •耐圧試験と連続して,下記条件にて漏えい試験を実施し,「60分後の圧力降下が5kPa以下であること」を確認 加圧媒体:空気, 試験圧力:0.09MPa以上, 圧力保持時間:60分以上

圧力

0.11MPa 0.09MPa (1) ① iii)-1 接続部施工後の健全性確認

溶接部検査 PT No.62

■VT(直接目視)

S/C継手溶接装置でのVT(カメラ目視)と同様の箇所にオーバーラップを確認。

オーバーラップ:288°付近 溶接ビード部, 294°付近 溶接線下側止端部, 356°付近 溶接線凹み部

90°方位,180°方位の溶接パス間にも上記箇所より程度の小さいオーバーラップを確認(欠陥と評価)。溶接終端部(0°方位)にはクレータ処理が不完全であったとみられるピットを確認(欠陥と評価)。

なお, S/C継手溶接装置でのVT(カメラ目視)でアンダーカットと判定した箇所は,直接目視の結果,欠陥ではないと評価した。 アンダーカット: 18°付近 配管側止端部

カメラ目視でのVT不合格部付近の状況は以下の通り(全体外観写真等は次項参照)

最終層で割れがないことを確認(写真は次項参照)

PT

(1) ① iii)-1 接続部施工後の健全性確認
 ■ 溶接部検査【VT(直接目視), PT】

全体外観(PT) IRID 溶接部検査

ΡΤ

No.63

溶接部検査

VT(直接目視)

溶接部

健全性確認

(1) ① iii)-1 接続部施工後の健全性確認

断面マクロ観察

4方位の断面観察を実施し,のど厚10mm以上,脚長17mm以上を満足することを確認。また,一部箇所で融合不良を確認。

溶接部

健全性確認

方位	脚長 【延長配管側】	脚長 【S/Cシェル側】	のど厚 【実測値】
0	23.0mm	24.0mm	15.0mm
90°	27.0mm	24.0mm	17.5mm
180°	35.0mm	24.0mm	20.0mm
270°	31.0mm	24.0mm	18.0mm

【右図中注釈の詳細】

- 1 7パス目の際に発生した融合不良
- 2 2パス目の際に発生した融合不良
- 3 6パス目の際に発生した融合不良
- 4 8パス目の際に発生した融合不良

【発生要因の考察】

1~4の融合不良は、いずれも下進方向の溶接部で発生。 下進溶接では、溶融池が重力により溶接方向にアークより先行し、アー クが直接母材に飛ばないため、母材に十分な熱が伝わらず融合不良が発 生したと考察される。

ただし,断面ののど厚計測の結果,継手ののど厚は十分確保されており, 今回発生した融合不良は継手強度に影響を与えるものでは無い。

(1) ① iii)-1 接続部施工後の健全性確認

継手引張試験

「継手効率0.35以上」を満足することを確認

〇試験片

溶接実施後の試験体を加工し,短冊状試験片を0°,90°,180°,270°の4方位から採取

〇評価方法

引張試験による荷重 – 変位曲線およびのど厚実測値を元に継手効率の実力値を確認 継手効率の算定式 : η=σTJ / σTB

溶接部

健全性確認

oTJ:継手の引張強さ=引張り試験の破断荷重/のど断面(のど厚※1×試験片幅)

σTB:母材の引張強さ=試験片母材の引張強さ(ミルシート)

※1 のど厚は試験体の2断面の値を測定し、その平均値を取る。

No.65

※いずれの試験片も隅肉溶接部に亀裂が入っていないことから,算出された継手効率以上を有すると評価し,「以上」と記載

η :継手効率

6. 実施内容 (1) PCVアクセス・接続技術等の実規模スケールでの検証

①S/C取水部構築に関する開発技術の検証

i) 試験計画策定, 準備作業

ii) 遠隔施工性確認試験結果及び課題の抽出

iii)接続部施工後の健全性確認

iv) 実機工事に向けた閉じ込めの確保, 作業員の被ばく低減対策の検討及び課題の抽出

(1) ① iv)-1作業員の被ばく低減対策の検討

S/C取水部構築作業における現場作業時間分析 実規模スケール試験での作業実績を反映し、S/C取水部構築作業における現場作業時間の分析を実施。 延長配管の溶接・清掃・検査作業は、8パス分の「溶接」、「スラグ除去」、「吸引」で装置の入れ替え を繰り返し実施するため、現場作業時間が全作業の中でも支配的である。

延長配管下端の溶接・清掃・検査にかかる現場作業時間の内訳では、S/C継手溶接装置の投下・固定時の 装置芯出し作業が容易ではなく、この作業に時間を要している。

(1) ① iv)-1作業員の被ばく低減対策の検討

S/C取水部構築作業の被ばく低減に向けた課題の抽出

作業詳細 被ばく低減対策 実機工事に向けた課題 ・カート位置合わせの時間の短縮 インスタレーションカー ・カート位置合わせ機構の実装 トに装置を吊り替え インスタレーションカー ・インスタレーションカートに前 ・インスタレーションカート揚重装置 トを用いた装置投下時の 後・左右への調整機構を付与 機構の大型化による寸法逸脱 芯出し調整 ケーブル類の接続 ・ケーブル接続時間の短縮 ・ケーブルのワンタッチカプラ化 ・ケーブル接続場所の変更 ケーブルの統合 ・ケーブル接続してから現場搬入でき るよう装置繰りを見直す ・溶接装置改良(ウィービング機能付加 |溶接施工(溶接部条件)| ・施丁パス数削減 (3層8パス⇒2層4パス等) 等) ・装置改良後にのど厚許容値を満足す るかの試験等による確認

- (1) ① iv)-1作業員の被ばく低減対策の検討
 - 実規模スケール試験を踏まえたS/C取水部構築作業フローの見直し 試験結果を踏まえ、実機作業フローの見直しを実施。隙間計測装置(ハンディスキャナ)を用いる作業項目は合理 化が可能となる。
- <実規模スケール試験を踏まえた実機作業フロー(案)>

- 位置合せ方法の変更,隙間量・のど厚算定手順の変更(工場で延長配管下端部データを取得する作業項目 【被ばく無】の追加)に伴う作業項目削除により,現場作業が削減でき,作業員の被ばくの低減が可能。
- 除間量の管理方法の緩和(定量値不要,簡易的な確認)することで,さらに現場作業の削減が可能。

(1) ① iv)-2 閉じ込めの確保の検討

(a) S/C取水部構築時の閉じ込め確保の検討

【検討対象】

S/C取水部構築の施工手順において、S/C内ガスの閉じ込め確保が顕在 化するのは、S/C穿孔作業後である。S/C穿孔は延長配管-S/Cの溶接 、R/B1階床面との固定、隔離機構取付の完了後に実施する。

【S/C穿孔装置の概要】

S/C穿孔装置は,アブレイシブ・ウォーター・ジェットによりS/Cシェル にφ380の開口を設けることができる。(PCV補修PJで開発) S/C穿孔装置のシステム構成は以下の通り。

現場分電盤 研磨剤hy/l^o 屋外分電盤 J)フ^o レッサー AWJ穿孔装置 シールの旋回が可能 水供給装置 高圧水1:ット AWJ穿孔装置 S/C穿孔装置概要図

S/C穿孔装置システム構成

システム構成に基づき,S/C穿孔装置に接続されるホース・ケーブル類は以下の通り。

- 高圧水ホース
- 圧縮空気ホース
- 研削材供給ホース
- 動力・制御ケーブル

これらに加えて装置用吊りワイヤが設置・撤去時に装置へ取付けられる。

lo.C16 収納容器

【既存技術流用】 No.C17 WJ穿孔装置

(1) ① iv)-2 閉じ込めの確保の検討

【閉じ込めを考慮したS/C穿孔時のバウンダリ構成】

S/C穿孔時のバウンダリを維持するためにS/C穿孔装置は、ホース・ケーブル類のシール機構を備えた収納容器に入れた状態で運用する。収納容器のシール機構の空気供給部の圧力をS/C・延長配管内より高く維持することでS/C内ガスの外部への漏えいを防止する。

装置の吊り下ろし,吊上げ時の閉じ込めに係る運用を次項に示す。

以上の運用等により,S/C穿孔時にS/C内ガスの閉じ込め確保が可能と考える。

IRID

(1) ① iv)-2 閉じ込めの確保の検討

(b) S/C取水設備メンテナンス時の閉じ込め確保の検討

- S/C取水設備のメンテナンス時にはS/C取水セルを用いて閉じ込め確保を実施する。 S/C取水セルの要求機能は以下の通り。
 - PCV内で使用する機器(取水ポンプ,取水ホース)のメンテナンス(交換)
 - S/C取水設備運転時の汚染拡大防止
 - S/C取水設備メンテナンス時の汚染拡大防止
- S/C取水セル設置エリア確保のための大規模な干渉物撤去を避けるために小型の移動式セルの検討を実施。

【コンセプト】ホースリールをセル内ユニット化により現場作業(据付・交換)を低減

- ■移動式S/C取水セルの目標サイズ・重量検討
- サイズ
 - 幅: 1700mm以下 (通路両側のフェンス等は撤去することを前提とする)
 - 高さ: 2120mm以下(南側通路 炉内計装配管に対し, 図面寸法で90mmのクリアランスを確保)
- 重量
 - 1.22ton/m²以下(1階床耐荷重)
- 取水ポンプの仕様 揚程15m以上でなるべく吐出口径が小さいものを選定 【BTR22(新明和製)の例】 全揚程:16m 吐出量:0.3m³/min=18m³/hr 吐出口径:50mm 主要寸法 G=480mm, φE=235mm, D=60 質量:22kg

IRID

©International Research Institute for Nuclear Decommissioning

(1) ① iv)-2 閉じ込めの確保の検討 ■ 移動式S/C取水セルの設置,ホース勾配設置の概略手順の検討を実施。 <S/C取水セル設置 概略手順>

- 1. S/C取水セルを所定位置にレール上で移動する(遠隔)
- 2. 取合いフランジを昇降ジャッキで下げ,延長配管隔離機構のフランジを合わせる (遠隔)
- 3. 取合いフランジと延長配管隔離機構のフランジを結合する(遠隔)
- 4. ホースコネクタを系統側ホースに接続する(作業員接近)
- 5. 延長配管隔離機構,取り合いフランジ蓋を開く(遠隔)
- 6. ホースリールで水中ポンプを吊り下ろす (遠隔)

<ホース切離し時 勾配設置 概略手順> (詳細は次葉参照)

1.ポンプ停止後,仮設昇降足場(汚染水受けパン兼用)上に隔離弁,コネクタを乗せる(作業員接近) 2.仮設昇降足場を上昇させ(ホースコネクタ,隔離弁持ち上げ)隔離弁間の残留水を落とし,隔離弁を閉止(作業員接近)

(1) ① iv)-2 閉じ込めの確保の検討

■ ホース勾配の設置方法

- ・ポンプ停止後,仮設昇降足場(汚染水受けパン兼用)を搬入・設置し,仮設昇降足場上に隔離弁,コネクタを乗 せる
- ・仮設昇降足場を上昇させ(ホースコネクタ,隔離弁持ち上げ),残留水を落とした後,隔離弁を閉止する

(1) ① iv)-2 閉じ込めの確保の検討

■ホースコネクタ切離し 概略手順(案)

防止に関する検討結果を踏まえエンジニアリングで具体化(詳細検討)が必要

IRID

(1) ① iv)-2 閉じ込めの確保の検討 ■ホースコネクタ接続 概略手順(案)

他PJ(取り出し規模の更なる拡大・RPV内部調査)での機器交換時のバウンダリ確保,汚染拡大防止に関する検討結果を踏まえエンジニアリングで具体化(詳細検討)が必要

(1) ① iv)-2 閉じ込めの確保の検討

以下の水循環システム取水口構成に基づき、S/C取水を行うケース2、ケース3について、移動式S/C取水セルの概略配置検討を実施。(詳細は次項)

水循環システム取水口構成と要求機能

ケース	防護 レベル	取水箇所	要求機能	備考
	1	D/W	D/W保有水がS/Cへ移行しないよう, D/W水位をベントノズル下端より 100mm下(T.P.4194以下)に維持する。	・レベル1の水量(31.4m ³)とレベル2 の水量(46.6m ³)の差が小さく、レベ
1	2	D/W	D/W保有水がS/Cへ移行しないよう, D/W水位をベントノズル下端 (T.P.4294以下)に維持する。	ル2の裕度が小さい
	3	トーラス室	トーラス室保有水が建屋外に移行しないよう, トーラス室水位を最も低い 建屋貫通孔レベル(T.P1736)以下または地下水水位以下に維持する。	
	1	D/W	D/W保有水がS/Cへ移行しないよう, D/W水位をベントノズル下端 (T.P.4294以下)に維持する。	・レベル2でD/Wのデブリ加工水が S/Cに移行する。
2	2	S/C	S/C保有水のトーラス室への移行防止及びS/C保有水量の最小化のため, S/C水位をS/C強め輪上端+400mm(T.P3036)以下に維持する。	・S/C底部近傍に漏えい個所があり, S/C充填止水が必要な場合,また HWL(S/C強め輪上端+400mm
	3	トーラス室	トーラス室保有水が建屋外に移行しないよう, トーラス室水位を最も低い 建屋貫通孔レベル(T.P1736)以下または地下水水位以下に維持する。	(T.P3036))以下に漏えい箇所が ある場合は設定水位を見直す必要 がある。
	1	S/C	S/C保有水のトーラス室への移行防止及びS/C保有水量の最小化のため, S/C水位をS/C強め輪上端+200mm(T.P3236)以下に維持する。	・レベル1でD/Wのデブリ加工水が S/Cに移行する。
3	2	S/C	S/C保有水のトーラス室への移行防止及びS/C保有水量の最小化のため, S/C水位をS/C強め輪上端+400mm(T.P3036)以下に維持する。	・S/C底部近傍に漏えい個所があり, S/C充填止水が必要な場合,また HWL(S/C強め輪上端+400mm
	3	トーラス室	トーラス室保有水が建屋外に移行しないよう, トーラス室水位を最も低い 建屋貫通孔レベル(T.P1736)以下または地下水水位以下に維持する。	(T.P3036))以下に漏えい箇所が ある場合は設定水位を見直す必要 がある。

(1) ① iv)-2 閉じ込めの確保の検討

- S/C取水セルの概略配置検討結果の成立性確認のためにS/C取水セルとの干渉物検討を実施。
- ▶ 1F-3R/B南西大物搬入口から南東エリアまでのアクセスルートにおける干渉物

(1) ① iv)-2 閉じ込めの確保の検討

- ▶ 1F-3R/B南西大物搬入口から南東エリアまでのアクセスルートにおける干渉物(続き)
- ③-2 計装配管: セルと干渉しない ④ 梯子: セルと干渉する (セル高さ2080mmの設定根拠)
- ⑤ 盤(480VMCC): セルと干渉する PCV内冷温状態維持用のCS系MO-14-12B 仮設ケーブルがつながっているため,撤去前 に電源切替えが必要

IRID

6. 実施内容 (1)PCVアクセス・接続技術等の実規模スケールでの検証

② 水循環システムバウンダリの有効性確認試験

i) 試験計画策定, 準備作業等

- (a) 試験の目的と概要,目標
- (b) 試験の流れ
- (c) 一連試験による確認項目
- (d) 実規模試験体現状確認試験
- (e) 補修材の事前確認試験
- (f) バウンダリ有効性確認試験
- (g)バウンダリ有効性確認試験(分解調査)

ii) 試験結果

- (a) 試験の実績スケジュール
- (b) 実規模試験体現状確認
- (c) 補修材の事前確認試験
- (d) バウンダリ有効性確認試験
- (e) バウンダリ有効性確認試験(分解調査)

iii) 設備の維持管理

(その他)

試験体の移動, 試験体・試験設備の解体・処分, 利用エリアの原状復旧

(a) 試験の目的と概要, 目標 (1/2)▶ 目的

1F-1D/Wからトーラス室S/C内周側に流出している汚染水対策の一環として,トーラス室下部に S/C シェル下端に接する程度以上にバウンダリ構成用モルタルを打設,その後補修材を 打設し, S/C 及びモルタル+補修材でトーラス室S/C内側内周側空間を隔離し,汚染水, 燃料デブリ粉のバウンダリとして活用できる可能性を実規模試験で確認する。

放射性物質のトーラス室内周側から外周側への漏えい を抑制することにより、トーラス室外壁から地下水への 放射性物質漏えいリスクを緩和するレベル3の措置として 行うものである。

▶ 概要

JAEA楢葉遠隔技術開発センターの実規模試験体を 有効に活用して、効率的に検証を進める。2017年に 打設した、ひび割れの存在するS/C脚部補強材の現 状に対し、補修材を打設し、汚染水や燃料デブリ粉 の浸透に対する抑制の効果を調査する。

No.85

IRID

(1)②i) 試験計画策定,準備作業等(a) 試験の目的と概要,目標 (2/2)

● 水循環システムバウンダリの有効性確認試験の達成目標

項目	目標を判断する指標
水循環システムバウンダリ の有効性確認	S/Cシェル下端に接する程度以上にバウンダリ構成用 モルタル及び補修材を打設し、S/C及びモルタル+補 修材でトーラス室S/C内周側空間を、汚染水、燃料デ ブリ粉のバウンダリとして活用できる可能性について 実規模スケールでの試験で確認できていること。 (終了時目標TRL:5(*))

(*):実規模ベースでの補修材によるバウンダリ性能の実証を対象とし、分解調査までを実施し確認する。 補修材打設のための実規模設備は、別途検証する。(別途検証においてトーラス室やS/C構造の実規模試験体は必要としない)

レベル	本事業に対応した定義	フェーズ
7	実用化が達成している段階	実運用
6	現場での実証を行う段階	フィールド実証
5	実機ベースのプロト機を製作し、工場等で模擬環境下での実証を 行う段階	模擬実証
4	開発、エンジニアリングのプロセスとして、試作レベルの機能試 験を実施する段階	実用化研究
3	従来の経験を応用、組合せによる開発、エンジニアリングを進め ている段階。または、従来経験のほとんど無い領域で基礎データ に基づき開発、エンジニアリングを進めている段階	応用研究
2	従来経験として適用できるものがほとんど無い領域の開発、エン ジニアリングを実施し、要求仕様を設定する作業をしている段階	応用研究
1	開発、エンジニアリングの対象について、基本的内容を明確化 している段階	基礎研究

(c) 一連試験による確認項目

試験	試験体	確認項目	補足	6.(1)ii)① 参照項No.
実規模試験体 現状確認	楢葉実規模 試験体	・脚部補強材の現状を確認する (ひび割れ,隙間,表面凹凸) ・内周から外周への漏えい速度	・コア抜き跡はモルタルで埋める ・内周側水位を設定して漏えい速 度を計測する	(d)
補修材の事前確認				(e)
補修材 トーラス室水温影響 確認試験(止水性)		・トーラス室内の水温が補修材の止 水性能に与える影響を確認 (止水 迄の時間,止水程度の差異)	・結果を踏まえ, 試験時水温管理 を計画する	(e) (A)-1
補修材 トーラス室水温影響 確認試験(流動性)	事前確認用	・トーラス室内の水温が補修材の流 動性に与える影響を確認	・結果を踏まえ, 試験時水温管理 を計画する	(e) (A)-2
補修材 長距離流動 確認試験	試験体 (工場)	・実機施工で想定される補修材の流 動距離(35m)が補修材の性能に与え る影響を確認	・流動距離を模擬した補修材打設 を行い, 補修材の成分, 止水性へ の影響, その他特性を確認する	(e) (B)
補修材 排水ポンプへの影響 確認試験		・補修材を投入後,トーラス室内の 排水ポンプへの影響。ポンプとの距 離により,補修材のポンプ吸込の有 無を確認	・10m ³ /hrの排水ポンプにより影 響を確認する	(e) (C)
バウンダリ 有効性確認試験	楢葉実規模 試験体	・実規模試験体トーラス室内周側に 補修材を打設し,その後燃料デブリ 模擬粉を投入し外周側への流出状況 を確認	・内周側水位を設定値に管理しつ つ,補修材打設,燃料デブリ模擬 粉投入実施	(f)
バウンダリ 有効性確認試験 (分解調査)	楢葉実規模 試験体	・トーラス室内の水や補修材を排出 後,実規模試験体を解体しながら, 燃料デブリ模擬粉の浸入状況を確認	・脚部補強材のひび割れ部や構造 物との境界面についてコアサンプ ルや断面を取り観察する	(g)

(d) 実規模試験体現状確認試験

▶ 作業手順と確認項目(1/2)

No.	作業手順	要領または試験条件	確認項目
<1>	実規模試験体トーラス室の水抜き	・排水ポンプによりトーラス室内外周の滞留水 を全て抜く	-
<2>	S/C 脚部補強材コア抜きの状況確認とコ ア抜き穴の補修	・S/C 脚部補強材の施工完了当時のコア抜きか ら漏えいの可能性があるため,無収縮モルタル を注入し,コア抜き穴を補修,モルタルが安定 する迄の期間放置する ・現状コア抜き位置は約30個所あり	・コア抜き跡について,形状,深 さを確認すること ・補修後,コア抜き穴が埋まり, 表面が周囲と均一であること
<3>	S/C 脚部補強材ひびわれ計測, S/C 脚部 補強材とシェルの隙間計測	・表面のひび割れ, S/Cとの隙間を計測する	・コア抜き穴補修後,漏えい量確 認前の状況として,ひび割れ,隙 間計測を行うこと ・S/C脚部補強材の施工完了当時 の記録に対し,変化の有無を確認 すること
<4>	実規模試験体トーラス室内周側水張り	・1F-1で想定するトーラス室内周側水位に基き, 実規模試験体でのトーラス室内周水位を設定 (D/W水位をD/W底部から300mmで管理する と想定し,トーラス室内周水位も同水位と仮定 して設定)し,予め設定する水位誤差範囲内の 水位を守るよう,注水,排水を管理する ・注水は常温水とする	・次手順<5>による漏えい量確認 の実施中,トーラス室内周の水位 が所定の誤差範囲内で確保されて いること
<5>	実規模試験体トーラス室外周側水位計 測 (漏えい量確認)	1.トーラス室外周を予め定めた基準水位以下まで排水2.上記基準水位から、予め定めた漏えい測定水位迄の水位上昇に要する時間を計測	・左記1.→2.の手順により両水位 間のトーラス水容積と上昇時間に より流出速度を算出すること
<6>	実規模試験体トーラス室外周の水抜き	トーラス外周の排水ポンプにより水を抜く	-

(1)②i) 試験計画策定, 準備作業等 (d) 実規模試験体現状確認試験

▶ 作業手順と確認項目(2/2)

作業手順<5> 実規模試験体トーラス室内周側水張

(e) 補修材の事前確認試験(1/4)

▶ トーラス室水温が補修材止水性能に及ぼす影響確認試験

【目的】

トーラス室水温の変動が補修材の止水性能に影響を及ぼさないことを確認する。 バウンダリ影響確認試験において、一定期間の漏えい確認を考えた場合、水温を制御する ことは現実的ではないため、予め水温の影響がないことを確認することを目的とする。 【試験条件】

水温 :5℃(氷水),40℃

補修対象:実規模試験体の現状確認で確認されたひびわれ・脚部補強材-シェル間隙間より大きな開口

【試験手順】

- ・試験容器(底に穴が開いた容器)に S/C 脚部補強材模擬体(スリット・砕石等)を入れる
- ・水温を調整した水槽に試験容器を設置する

・水温を調整する

- ・水槽から試験容器に水を汲み入れ、水を循環し、試験容器に補修材を投入する。
 ・試験容器内に水が溜まってきたらポンプ排出先を
- 排水設備に切り替え,水槽内の水を抜く 補修材 氷(冷水の場合)
- ・試験容器下部からの単位時間当たり漏えい量を計測する
 【判定基準】

下記において,水温による差異がないこと

- ・漏えいが止まるまでの時間
- ・単位時間あたり漏えい量

(e) 補修材の事前確認試験(2/4)

▶ トーラス室水温が補修材流動性能に及ぼす影響確認試験

【目的】

トーラス室水温により補修材の流動性に影響を及ぼさないことを確認する。 【試験条件】

- ・エアモルタルおよびエアミルクの試験方法(JHS 313-1192シリンダー法)による フロー試験に準拠
- ・補修材温度 :5℃,40℃ 【試験手順】
- ・塩ビ板上に測定器を置き,補修材をシリンダーフロー測定器(内径80cm,高さ80cmの円筒容器)に充填して液面を水平にする
- ・計測器を持ち上げ,補修材の広がり幅(フロー値)を測定する

【判定基準】

フロー値:250mm±50mm

- (e) 補修材の事前確認試験(3/4)
- ▶ 補修材の長距離流動確認試験

【目的】

PCV補修PJでの1F-1 S/C脚部補強打設位置検討の結果による打設位置から補修材を打設することを考えると、補修材の必要流動距離は35mとなる。補修材が35m流動した際に、補修材成分や止水性の変化による影響の有無を確認する。

【試験方法】

- ・バウンダリ有効性確認試験で打設したものと同仕様、同時製作した補修材を使用
- ・長距離流動性確認試験の概要を下図に示す

【試験確認項目】

- -打設完了時,打設完了日翌日,打設完了後4日目に,補修材厚さを10m毎に測定
- -補修材厚さの測定完了後,打設箇所および10m毎位置にて補修材をサンプリング して粒度試験,止水性確認試験を行い,流動距離による補修材の成分,性能の相違 を確認

(e) 補修材の事前確認試験(4/4)

▶ 補修材がトーラス室排水ポンプに及ぼす影響確認試験

【目的】

定常的に排水を継続することとなるトーラス室排水ポンプの運転に対する影響の有無を 確認する。

【試験条件】

ポンプの性能は 10m³/h の排水が可能であること

補修材上端からポンプまでの距離δ; 5cm, 10cm, 15cm

【試験手順】

- ・補修材の上の水をポンプで汲みだす
- ・汲み出し後の水質を測定(懸濁物質量)
- ・補修材の減少を目視で確認

【判定基準】

特になし(ポンプから補修材までの距離による水質データの変化を確認)

IRID

(f) バウンダリ有効性確認試験

▶ 作業手順と確認項目(1/3)

No.	作業手順	要領または試験条件	確認項目
<1>	実規模試験体トーラス室内周に 水張り	・トーラス室内周に給水し,水張を行う ・確認試験(e)-(A)-1,-2の結果を踏まえ,必 要な場合は注水温度を設定する(水温管理す る場合,給水タンクのヒータにより所定の給 水温度として循環させる)	・内周側からS/C脚部補強材 のひび割れを通過して外周側 への水流出量を確認し,必要 に応じ外周側の排水を行うこ と
<2>	実規模試験体トーラス室内周の 水位調整	・1F-1で想定するトーラス室内側水位に基 き,実規模試験体でのトーラス室内周水位を 設定し,予め設定する水位誤差範囲内の水位 を守るよう,注水,排水を管理する	・手順<3>による漏えい量確 認の実施中,トーラス室内周 の水位が所定の誤差範囲内で 確保されていること
<3>	実規模試験体トーラス室外周側 水位計測 (漏えい量確認・試験終了まで 継続(随時))	 ・下記1.→2.の手順を複数回繰返し、水位上 昇速度が安定したことを確認し、流出速度を 算出 1.トーラス室外周を予め定めた基準水位以 下まで排水 2.上記基準水位から、予め定めた漏えい測 定水位迄の水位上昇に要する時間を計測 ・水位計測は手順<4>の補修材打設後、手順 <6>の燃料デブリ模擬粉の投入後を含め、試 験終了まで随時継続する 	・左記1.→2.の手順により両 水位間のトーラス水容積と上 昇時間により流出速度を算出 すること*1

*1:放射性物質のトーラス室内周側から外周側への漏えいを抑制することにより、トーラス室外壁から地下水への放射性 物質漏えいリスクを緩和するレベル3措置として行うものであり、水、燃料デブリ模擬粉のトーラス室外周への流出の 判定基準はなし

IRID

(1)②i) 試験計画策定,準備作業等 (f) バウンダリ有効性確認試験

▶ 作業手順と確認項目(2/3)

*

IRID

	作業手順	要領または試験条件	確認項目
<4>	実規模試験体トーラス室内周 に補修材を打設	・目標層厚125mm(*2) 以上を想定した予定量 の補修材を打設する(打設量:約2m ³ 以上) ・打設後,補修材状況が安定するまで時間を置く ・手順<3>によるトーラス室外側水位計測による 漏えい量を確認し,漏えい量が安定するまで時間 を置く	_ (補修材の打設状況の確認は (g)分解調査 水抜き後の <2>で実施)
<5>	内周側の水に着色	・注入水に着色し, トーラス室内周の着色を均一 にし, 一定時間経過させる	・外観により均一に着色し ていること
<6>	実規模試験体トーラス室内周 に燃料デブリ模擬粉を投入	・燃料デブリ模擬粉は,燃料デブリの性状把握PJ の検討結果(寸法,比重)を考慮して選定する	-
<7>	実規模試験体トーラス室外周 の滞留水をサンプリング (燃料デブリ模擬粉の有無, 濃度の確認)	・一定時間(別途検討)経過後,トーラス室外側 に滞留水を複数個所でサンプリングし,燃料デブ リ模擬粉の含有状況を分析する ・実規模試験体は,この後,試験棟屋外エリアに 移動するが,移動の後,試験体の分解前の時点等 を選び,複数回実施し,状況に変化が無いかを確 認する	・サンプリング水に含まれ る燃料デブリ模擬粉の有無, 濃度を確認すること(*1)
1:放射 地下2 燃料 2:・原	性物質のトーラス室内周側から外周側 kへの放射性物質漏えいリスクを緩和 デブリ模擬粉のトーラス室外周への流 子炉格納容器漏えい箇所の補修技術の	小の漏えいを抑制することにより,トーラス室外壁から するレベル3措置として行うものであり,水, 出の判定基準はなし)開発PJにおけるベント管止水試験において5.8mの流動	b, S/C

止水効果を確認済 ・PCV補修技術PJにおける1F-1S/C脚部補強材打設位置検討結果3箇所のうち、 高線量エリアである南東位置を除く2箇所からの打設を想定すると、補修材の最長流動距離 は35mとなる。これに対する流動性につき、別途、補修材の長距離流動確認試験を行う。

©International Research Institute for Nuclear Decommissioning

補修材

打設

▶ 作業手順と確認項目(3/3)

IRID

(g) バウンダリ有効性確認試験(分解調査) ▶ 作業手順と確認項目(1/3)

No.	作業手順	要領または試験条件	確認項目
<1>	実規模試験体トーラス室の水抜き	・トーラス室内外周の水を排水ポンプで抜く	-
<2>	補修材の打設状況の確認	・全体外観を見るとともに,トーラス室試験体 角部6カ所で高さを確認する	・補修材の表面に顕著な凹凸が無 く,打設高さが,予め定めた目標 値範囲内であるかを確認すること
<3>	実規模試験体内補修材の回収・廃 棄	・吸引等の方法により表面に堆積している補修 材をバキュームカーで回収後,廃棄する ・脚部補強材の割れや,構造物と脚部補強材の 境界部に浸透している補修材は吸引しない	_
<4>	S/C 脚部補強材ひび割れ部の コア抜き位置, 断面切断位置 の設定	 ・S/C 脚部補強材ひび割れ部の (d)<3>の計測 結果,及び現段階の観察結果を踏まえ,燃料デブリ模擬粉の浸透を確かめるためのコア抜き位置,断面観察位置を設定する >S/C 脚部補強材ひび割れの位置での燃料デブリ模擬粉浸透の可能性のある箇所に着目してコア抜き位置を選定する > ひび割れ位置の断面を見れる可能性のある 箇所に着目して断面切断位置を選定する 	_
<5>	S/C 脚部補強材ひび割れ部のコア 抜き (鉛直方向)	・選定したコア抜き位置からコアサンプルを採 取する	_
<6>	コアに含まれる燃料デブリ模擬粉 の調査 (X線分析)	・コアサンプルの分析を実施	・燃料デブリ模擬粉の浸透範囲, 傾向に関するデータを採取するこ と

(1)②i) 試験計画策定,準備作業等(g) バウンダリ有効性確認試験(分解調査)

▶ 作業手順と確認項目(2/3)

No.	作業手順	要領または試験条件	確認項目
<7>	実規模試験体上物解体	・S/C 脚部補強材およびS/C内充填止水材の上 の範囲を解体する	-
<8>	実規模試験体切断	・手順<4>で選定した切断面位置を, ワイヤー ソーにより S/C 垂直方向に切断を実施する ・手順<5>コア抜きの結果, 切断面位置を再検 討の必要がある場合は, 位置見直しの上, 切断 を行う。	_
<9>	S/C 脚部補強材とシェル境界部 及び床壁部の境界部の補修材状況, 燃料デブリ模擬粉浸透状況の確認 (外観確認)	・手順<8>にて切断した断面(S/C 脚部補強 材と S/C シェルとの境界部及び補強材と床構 造部との境界部)について,補修材・燃料デ ブリ模擬粉浸透状況の確認(外観確認)を実施 する	・補強材ひび割れ部の断面, 構造材と補強材との境界部断 面に補修材の浸透した状況, 燃料デブリ模擬粉が浸透した 深さ等の状況を確認すること
<10>	S/C 脚部補強材とシェル境界部及 び床壁部の境界部のコア抜き(水平 方向)	・手順<9>の断面観察の結果を踏まえ,断面から燃料デブリ模擬粉の浸透を確かめるためのコア抜きサンプル調査が有効と思われる部位に対し,コアサンプルを採取する	_
<11>	コアに含まれる燃料デブリ模擬粉 の調査 (X線分析)	・コアサンプルの分析を実施	・燃料デブリ模擬粉の浸透範 囲,傾向に関するデータを採 取すること

(1)②i) 試験計画策定, 準備作業等 (g) バウンダリ有効性確認試験(分解調査)

▶ 作業手順と確認項目(3/3)

作業手順<5>, <9>, <10> コア抜き調査, 断面観察

6. 実施内容 (1)PCVアクセス・接続技術等の実規模スケールでの検証

② 水循環システムバウンダリの有効性確認試験

i) 試験計画策定, 準備作業等

- (a) 試験の目的と概要, 目標
- (b) 試験の流れ
- (c) 一連試験による確認項目
- (d) 実規模試験体現状確認試験
- (e) 補修材の事前確認試験
- (f) バウンダリ有効性確認試験
- (g)バウンダリ有効性確認試験(分解調査)

ii) 試験結果

- (a) 試験の実績スケジュール
- (b) 実規模試験体現状確認
- (c) 補修材の事前確認試験
- (d) バウンダリ有効性確認試験
- (e) バウンダリ有効性確認試験(分解調査)

iii) 設備の維持管理

(その他)

試験体の移動, 試験体・試験設備の解体・処分, 利用エリアの原状復旧

	2018	年度				2019年度								
上柱(系 <i>)</i>	2	3	4	5	6	7	8	9	10	11	12	1	2	3
実規模試験体 現状確認		4	曾葉現場 ◆ ■ ■	準備	⇒									
補修材の 事前確認					⇒									
バウンダリ 有効性確認				-	準備 ━ ━ ━ ►									
同上 (分解調査)								(_			
実規模試験体 移動, 解体・廃棄						大	3動			解体,	廃棄			
作業フロア・レール 解体・廃棄/床補修										解体,	廃棄 (原状復旧		

IRID

No.103

(b)実規模試験体現状確認 (1/2) (寸法関連)

(1)②ii) 試験結果

補強材打設位置 (PCV補修技術実規模PJで打設) Omm (レベル計測基準位置) 6mm 18mm 1mm 12mm 6mm 補修材打設前レベル計測(2019年4月計測)

s/c内周側補強材上面 レベル差の計測

0.0mm

ひび割れ計測位置とひび割れ幅の実測値(2019年4月)

断面2—1 2<u>00</u>9555 断面2—2 新面2 所面ろ С 断面5 断面6 断面4

断面位置 S/Cシェルとの隙間 トーラス壁との隙間 1 0.0mm 0.0mm 2 0.0mm 0.0mm 1.2mm 2 - 1 0.0mm 0.0mm 2.5mm 2 - 23 0.0mm 1.3mm 0.0mm 4 0.0mm 5 0.0mm 0.0mm 6 0.0mm

脚部補強材とS/Cシェル、トーラス壁面との隙間(2019年4月)

(b)実規模試験体現状確認 (2/2) (外周側水位上昇確認)

- ・試験のイメージは6.(1)②i)(a)(1/2)(シートNo.86)右側の図を参照。
- ・S/C内周側水位を補強材上面から6865mm,外周側水位を補強材上面から200mmとして外周側水位上昇の確認を開始し,複数回実施した。

試験条件に対し、現状の試験体では、S/C内周側の滞留水が、S/C下部の脚部補強材モルタルを経由して、S/C外周側へ7mm~9mm/hrの速度で漏えいすることを確認した。

(c)補修材の事前確認試験 (1/3) (トーラス室水温の影響確認試験)

【目的】 滞留水の温度が補修材の性能に及ぼす影響の有無を確認

- ▶ 水温が流動性に及ぼす影響の確認
- > 水温が止水性に及ぼす影響の確認
- ・補修材:実規模試験体に打設したものと同仕様で 試験用に製作
- ・水温範囲:5℃~40℃

試験条件

- ・補修材温度:5℃, 15℃, 40℃
- ・試験回数:各温度3回フロー試験実施,平均値をフロー値とした

試験結果

- ・補修材密度:1.86(g/cm³) ⇔ 規格値1.85±0.05(g/cm³)
- ・フロー:

補修材温度	5°C	15℃	40°C				
1回目	266mm	266mm	266mm				
2 回目	269mm	269mm	259mm	⇔規格値			
3 回目	267mm	266mm	263mm	250±50(mm)			
平均	267mm	267mm	263mm				
試験対象》	温度範囲で	,補修材 <i>0</i>)フロー値(は規格値の			
範囲内であり、有意な値の変化は無いことを確認							

	結	論
_		

トーラス室内滞留水の想定温度範囲で,温度による補修材性能(流動性・止水性)への影響は無視できる事を確認した。

(c)補修材の事前確認試験(2/3)(補修材の長距離流動性確認試験)

【目的】

PCV補修技術PJでの1F-1 S/C脚部補強打設位置検討の結果による打設位置から補修材を打設することを考えると、補 修材の必要流動距離は35m程度と想定されている。補修材が35m流動した際に,補修材成分や止水性の変化による影 響の有無を確認する。 【試験結果】

【試験確認項目】

- -打設完了時,打設完了日翌日,打設完了後4日目に,補修材 厚さを10m毎に測定
- -補修材厚さの測定完了後,打設箇所および10m毎位置にて 補修材をサンプリングして粒度試験,止水性確認試験を行い, 流動距離による補修材の成分, 性能の相違を確認

【試験方法】 6.(1)②i)(e)(B)を参照

【実施状況】

- 塩ビ半割り管を試験ヤードに配置して実施

水路設置状況

水路設置完了

- 補修材厚さの測定結果

打設4日後の	35m流動に対する勾配,約0.1%を確認					
測定位置	0m	10m	20m	30m	35m	勾配(%)
哺修材厚さ ; 打設4日後(cm)	13.5	12.5	10.5	10.0	9.5	0.11

No.106

流動距離0m下層	流動距離35m下層	補修材無(加圧無)
2.1	2.6	1,980,000

【結論】 – 補修材が打設点から35m先まで到達することを確認 -補修材厚さの勾配は徐々に水平に近づき,4日目で約0.1%になるセルフレベリング性能を確認 - 粒度試験,止水性確認試験の結果から,長距離打設による補修材の止水性に影響がないことを確認 -なお,全体に実験室製造の補修材に比べて粗粒が少ない傾向があり,長時間の補修材攪拌,循環に起因すると想定された。

35m流動試験中

(c)補修材の事前確認試験 (3/3) (排水ポンプへの影響確認試験)

【目的】

補修材打設により、S/C内周側にバウンダリを形成した後、補修材上部の滞留水は定常的にポンプにより排水して管理 する。実機で、打設した補修材による排水ポンプ運転への影響を確認するために、補修材上面からのポンプ吸引部高さ の違いによる吸引水質の違いを確認する。

【試験方法】

- ・下図のタンクに補修材打設後4日を経過し、上澄み水採取位置(ポンプ吸い込み口位置)を補修材上面から、40cm、 20cm、10cm、5cmの4ケースとしてポンプにより吸引、それぞれ抜取り水貯槽用タンクに貯める。
- ・各抜き取り水のpH値, 濁度, 透視度を確認して比較する。
- ・ポンプによる吸引速度は10m³/hrで実施
- ・内径52.9mm,外形60.5mmの吸い込み口を下に向け吸引

【試験結果】

吸い込み口の高さによる吸引水の水質は 以下の通り。

補修材上10cmより上の吸い込み口位置では、打設した補修材を吸い込みの無いことを確認した。

	pН	濁度	透視度
ポンプ吸引前(打設直後)	-	-	6.0
ポンプ吸引前 (4 日後)	7.96	153.7 FTU	6.0
蒲修材上 40cm(4 日後)	7.76	144.6 FTU	6.0
浦修材上 20cm(4 日後)	7.50	141.1 FTU	6.0
補修材上 10cm(4 日後)	7.79	156.6 FTU	6.0
補修材上 5cm (4 日後)	7.97	256.2 FTU	4.0

【結論】 – 実機で想定される補修材上面の滞留水吸引速度10m³/hrの条件により試験をした結果,吸い込み口 高さを補修材上面から10cm以上離せば,補修材の吸引は無いことを確認した。 – 本試験と実機での吸い込み口形状の違いは実機施工の段階で考慮が必要。

(1)②ii) 試験結果

(d)バウンダリ有効性確認試験 (補修材の打設要領)

- ✓補修材の施工は、補修材の厚さ125mm以上の打設を基準として実施した。(過去の性能確認実績データに基づき設定)
 ✓実規模試験における施工、管理方法、判定は、以下要領で実施した。
 - •補修材打設後の表面勾配を想定し、打設範囲で最低でも125mm以上となる補修材打設量を評価、計画
 - •打設時は,補修材打設重量,密度の実測値に基き,補修材の打設量(体積)を確認しつつ,計画した量の 補修材を打設
 - •計画した量の補修材打設終了後,打設点(試験体北側端位置)から最も離れた確認孔(試験体南側端位置)で冶具により打設厚さを実測確認。125mm以上であることを確認し打設を完了した

⇒今回試験における打設要領を踏まえ,実機での打設要領で留意すべきポイントを7章(成果のまとめ)に記載。

補修材打設作業実施概要(試験体上部作業フロア)

補修材打設状況(試験体上部作業フロア)

(1)②ii) 試験結果 (d)バウンダリ有効性確認試験

(補修材打設前後の外周側水位上昇試験結果)

IRID

(1)②ii) 試験結果 (d)バウンダリ有効性確認試験(燃料デブリ模擬粉投入後の試験結果)

IRID

©International Research Institute for Nuclear Decommissioning

(1)②ii) 試験結果

(e)バウンダリ有効性確認試験(分解調査)

前記項目(b), (d)の試験結果から, S/Cと補強材+補修材による液相バウンダ リの有効性について結果が得られたが, さらに試験体の内部滞留水を排水し, 分解調査して燃料デブリ模擬粉の浸透について確認する。排水, 分解調査を, 以下手順により進めた。

次葉以降,1)~4)各項目について,脚部補強材に生じたひび割れや,S/Cシェルと脚部 補強材の境界隙間への補修材の浸入,滞留水や燃料デブリ模擬粉の浸入の痕跡を調査し た結果を示す。

- (1)②ii) 試験結果 (e)バウンダリ有効性確認試験(分解調査)~1) 試験体排水, 状況観察
 - ▶ 分解調査のため、内部の滞留水を排水し、状況を確認(2019/9/18)

滞留水排出後のS/C内周側の状況(中央は作業員通行用に短冊状コンパネを敷設) -脚部補強材の上面に補修材が一様に広がり、その表面上にデブリ模擬粉(黒色)が堆積している状況が確認された。 -燃料デブリ模擬粉はS/C内周側全面に均等に分布し、コンパネが沈んだ脇の断面を見ると補修材内部への浸透は無かった。

測定位置	No.1	No.2	No.3	No.4	No.5	No.6
測定厚さ(mm)	175	175	175	175	175	165

打設厚さ計画値125mmを上回っていることを確認した。 補修材上面のレベルはほぼ平坦であった。

(注)表中No.6位置は補強材上面レベルが他より高い位置である。

No.112

試験体滞留水の排水、状況観察

ひびわれ部コア抜き(鉛直方向)

3) 断面観察

鉛直コア採取箇所のひび割れ部,滞留水でUVライト反応確認⇒反応なし (着色剤を含む場合橙色の蛍光反応がある)

脚部補強材残留水確認
UVライト反応確認
内周側ひび割れ部(鉛直
コア削孔箇所)
反応なし

脚部補強材残留水確認
UVライト反応確認
内周側ひび割れ部(鉛直
コア削孔箇所)
反応なし

補修材打設以降の試験期間中,S/C内周側滞留水は,赤色着色剤(ローダミン)により着色した。 着色剤を含む水がひび割れ部に浸入すると残存し,UVライトに反応し痕跡を確認できるものであるが,着色剤の痕 跡は確認できなかった。⇒ 補修材の打設により,内周側の滞留水がひび割れに浸入しなかったことが示唆された。

(1)②ii) 試験結果

(e)バウンダリ有効性確認試験(分解調査)~2) 鉛直方向コア調査(2/2)

単位:wt%

▶ 脚部補強材のひび割れ部のコア抜き(鉛直方向)サンプルの分析結果(蛍光X線分析、ICP分析)

給直コア断面付着物 脚部補強材

鉛直コア断面付着物 蛍光X線分析結果

	-								,			外周側鉛但コン乾式
	鉛直コア①	鉛直コア②	鉛直コア③	外周側補強材	外周側補強材	外周側補強材	ICP分析結系		単位:mg/kg	外周側鉛直コア湿式		
	断面付着物	断面付着物	断面付着物	乾式削孔粉	湿式固相部	乾式内部		鉛直	鉛直	鉛直	外周乾式コア	
Ca	70.6	64.2	74.2	57.1	58.1	66.2		<u>⊐70</u>	<u> </u>	<u>⊐73</u>	内部採取	2.86m b 10m 4.930m
Si	14.0	18.4	10.0	27.8	26.8	21.5	w	7.1	4.3	7.5	1.7	Fallon Inter
Fe	4.6	4.9	5.1	4.6	5.6	4.3	Cr	15	17	55	31	$\Pi = 0/7$
		5.0	5.4	1			Ni	19	17	17	44	
Ва	4.0	5.0	5.1	_		_	Mo	2.3	3.5	2.6	1,0	
AI	3.1	3.9	2.6	5.4	5.3	4.4						2.93m 1.60m
S	1.4	1.1	1.5	0.5	0.8	1.1	ベージ	スと同等の	の濃度で	あった	内周側組	
К	1.3	1.3	0.7	2.9	1.8	1.4		ベー	スと老え	ろ脚部		内周側鉛直コア③
Mg	0.4	0.5	0.3	0.5	0.5	_		補引	は材の分析	所結果		公店コアサンプル採取位置
Zr	0.3	0.2	0.1	0.2	0.2	0.2		(柊	実擬粉混	入無) 		
Sr	0.1	0.1	0.2	0.1未満	0.1未満	0.1	│ ・内周側は補強材ひび割れ部から乾式でサンプルを採取し, 補修材, 燃料デブリ模擬 │					
Ti	_	-	-	0.6	0.5	0.5	粉のひび割れへの浸入有無を確認。					
Cu	_	-	-	0.2	_	_	→外周	側にかす	北戦唯談	このしの言	♪ひの無い <u>₩</u> #**!/+ フヽブ	直で钇式,溢式によりワンノルを採取。 割れ断面の付差物を採取
Mn	0.1未満	0.1未満	0.1未満	0.1未満	0.1未満	0.1未満	→日子	い。」」」のに	「試料の	「外周値	順乾式 温ま	111日回の17月初で末秋 た1はそれぞれ、17万抜き時の削孔粉を回収
Zn	0.1未満	0.1未満	-	_	_	0 .1未満	採取	,削孔	水に含ま	れる固相	目部を回収投	
(注) 表中	」 記載「0.1未満] :検出限別	」 界以上、定量:	下限以下		I]	•外周	, 側の補引	鱼材から	乾式で打	采取したサン	プルによる試料(各表中右端列の試料)は,
表中	記載「-」:	検出限界以下					קר+	ナンプルタ	破壊し	表面付	近の影響を	辟けるためコア内部より採取し分析した。
										デ 音は 無	~ <u>にち</u> んの/ 	
\geq	Caに関し、	内周側鉛	直コア①~	③ (ひび割ね	1面)は,長	長期にわたり水	と接してい	いたため,	コンクリー	-トからCa	a析出が多かっ	たと考えられる。

▶ Baは、外周で検出されず、内周側でのみ検出されており、補修材に配合される加重材由来の元素と考えられる。(表中赤枠部。加重材は主に硫酸バリウムから成る)

蛍光X線分析の結果,内周側ひび割れの内部には,補修材由来の成分(Ba)が侵入していることが確認され,補修材の浸入が確認された。 一方,燃料デブリ模擬粉由来の成分元素(W,Ni,Cr,Mo)は検出されなかった。

⇒蛍光X線分析による検出において,補修材打設により燃料デブリ模擬粉の浸入が止められたことが示唆された。

さらに高感度のICP分析による定量を行った結果,採取したひび割れ内付着物に含まれる燃料デブリ模擬粉特徴元素の濃度は、脚部補強材に ベースとして含まれる濃度と同程度であった。両分析の結果から、燃料デブリ模擬粉の脚部補強材ひび割れ内部への浸入は無いものと考えられる。

©International Research Institute for Nuclear Decommissioning

(1)②ii) 試験結果

(e)バウンダリ有効性確認試験(分解調査~3)断面観察) 脚部補強材のひび割れ調査結果から,最大のひび割れを想定し,断面観察面(≡水平 コア採取面)を決め,ワイヤソーにより試験体の切断を実施した。

現地視察会(2019/12/9)

ワイヤソー切断後状況

S/Cシェルとの境界部の UV照射確認,反応なし

IRID

ひび割れ露出部に補修材と 同系色の成分を確認した。 (試料採取, 分析を実施⇒次次葉、4)項)

No.115

ひび割れ位置と鉛直コア抜き位置, 断面観察面

S/Cシェルと脚部補強材の境界面及びひび割れ部分を観察し, 目視確認及びUVライトの照射確認で,トーラス室内周側滞留水 に添加した着色材(ローダミン)の反応は見られなかった。また, 切断面表面にひび割れの露出があり,位置的に,鉛直コア①, ②を削孔した位置のひび割れから連続していると想定された。ひび 割れ露出部分には,補修材と同系色の成分が侵入していることが 確認された。

これらの観察結果から,補修材微粒分が脚部補強材ひび割れ部等の間隙に入り込み,トーラス室内周側における止水効果を示したものと考えられる。

※コア削孔位置はコア芯で計測

水平コア削孔位置

水平コア削孔位置(写真)

S/C下面(塗装面) 採取したコアサンプルのうち,コア1及びコア2' については境界部表面の付着物が確認され,試 料として回収し分析を行った。(次葉)

断面観察面

水平コア抜き面

- ラス室内周側

コア3,4,5'においては、境界面の付着物はほとんど確認できず、分析不可能であった。

脚部補強材上面

最大ひび割れ想定面

水平コア抜き 彩端面

採取した各コアサンプルの境界部表面にUVライ ト照射により確認したが、いずれにおいても着 色剤(ローダミン)の反応は見られず、補修材 打設後着色した滞留水の浸入は確認されなかっ た。

水平コア削孔状況

水平コア2′境界部UVライト照射状況 (脚部補強材上面中央付近)

No.116

試験体滞留水の排水、状況観察

ひびわれ部コア抜き(鉛直方向)

4) 境界部コア抜き(水平方向)

3) 断面観察

HY 15 +04

- 注1) コア2, コア5はコアサンプルの回収ができなかった。代替としてコア2', コア5'を採取した。
 - 2) コア1, コア2′及び脚部補強材ひび割れ部断片から乾燥後付着物を採取。
 - 」ア3, コア4, コア5'の境界部には付着物ほとんど無く分析不可能であった。
 - 3) 脚部補強材ひび割れ部については、「3)断面観察」の記載を参照。

水平コア,脚部補強材ひび割れ部 蛍光X線分析結果

					1111111111111111111111111111111111111
	水平コア1	水平コア2 ′	水平コア1	水平コア2 ′	脚部補強材
	境界部付着物	境界部付着物	削孔水固相部	削孔水固相部	ひび割れ部付着物
Са	42.5	53.3	31.9	34.7	72.0
Ba	22.0	27.8	-	—	1.9
Si	19.9	7.6	38.7	41.8	16.5
Fe	4.4	2.8	14.0	7.4	4.0
AI	4.9	1.9	8.6	9.9	2.9
S	3.3	4.4	0.5	0.5	0.1未満
К	1.8	0.9	2.6	2.4	1.9
Mg	0.4	0.5	1.1	1.5	-
Zr	0.2	0.1未満	—	0.1未満	0.2
Sr	0.4	0.5	0.1未満	0.1未満	0.1
Ti	_	_	0.8	0.6	0.1
Cu	0.1未満	-	—	0.1	—
Mn	_	_	0.9	0.6	0.1未満
Zn	0.2	0.1	—	_	0.1未満
Pb	_	0.1	—	_	_
Cr	_	-	0.5	0.2	_
Co	_	-	0.1未満	_	_
	(注)表中記載	0.1未満」:検	出限界 <mark>以上、</mark> 定	量下限以下	
	表中記載	「-」 :検	出限界以下		

水平コア,脚部補強材ひび割れ部 ICP分析結果

単位:mg/kg

関係者外秘

No.117

	水平コア1	水平コア2 ′	水平コア1	水平コア2 ′	脚部補強材	トーラス室外周側
	境界部付着物	境界部付着物	削孔水固相部	削孔水固相部	ひび割れ部付着物	(乾式コア内部試料)
W	2.2	1.2	15	9.7	1.0	1.7
Cr	32	73	530	370	25	31
Ni	13	20	21	18	22	44
Mo	3.0	1.0	8.4	11	1.4	10
	ベースと同	γ]]等の濃度	コアビット	摩耗粉含む	脚部神(模擬粉	

- ▶ 蛍光X線分析の結果,水平コアで採取したS/Cシェルと脚部補強材の境界 部付着物及び,脚部補強材ひび割れ部付着物から補修材由来と考えられ るBaが検出され,S/Cシェルと脚部補強材の境界部や脚部補強材のひび割 れ部に補修材が浸入していたことが確認された。
- ▶ ICP分析の結果、上述の境界部、ひび割れ部における付着物の燃料デブリ 模擬粉特有の各元素濃度(W,Ni,Cr,Mo)は脚部補強材の元素濃度と比 較して概ね同程度であり、境界部への模擬粉浸入が無いことが確認された。 なお、削孔水固相部ではこれらと比較して各元素濃度は高い値となっており 、これはコアビットの摩耗成分に由来するものが流下したものと考えられる。削 孔水の境界部付着物への影響は小さかったと考えられる。

(e)バウンダリ有効性確認試験(分解調査)1)~4)を通して、脚部補強材に生じたひび割れやS/Cシェルと脚部補強材の境界隙間に補修材の浸入した痕跡が確認され、これによる止水効果によってトーラス室内周側の滞留水や燃料デブリ模擬粉が外周側へ漏えいしなかったと想定される結果が得られた。 これら内容は、(d)項試験で得られた結果と整合するものである。

6. 実施内容 (1)PCVアクセス・接続技術等の実規模スケールでの検証

② 水循環システムバウンダリの有効性確認試験

i) 試験計画策定, 準備作業等

- (a) 試験の目的と概要, 目標
- (b) 試験の流れ
- (c) 一連試験による確認項目
- (d) 実規模試験体現状確認試験
- (e) 補修材の事前確認試験
- (f) バウンダリ有効性確認試験
- (g)バウンダリ有効性確認試験(分解調査)

ii) 試験結果

- (a) 試験の実績スケジュール
- (b) 実規模試験体現状確認
- (c) 補修材の事前確認試験
- (d) バウンダリ有効性確認試験
- (e) バウンダリ有効性確認試験(分解調査)

iii) 設備の維持管理

(その他)

試験体の移動, 試験体・試験設備の解体・処分, 利用エリアの原状復旧

(1)ii)③ 設備の維持管理

(水循環システムバウンダリの有効性確認に関するもの)

- JAEA楢葉での実規模試験にむけた設備維持の為,月1回の サーベランス運転を継続して実施した。
- ●運転は、実規模試験の実施に合わせて2019年9月までの予定であったが、実規模試験体等の分解・撤去に伴う排水処理や、利用終了に伴う設備のドライアップに伴う排水が2020年3月まで発生することから、2020年3月まで実施した。
- ●これより,各設備の安定運転を確保し,設備の維持管理が 図れた。

6. 実施内容 (1)PCVアクセス・接続技術等の実規模スケールでの検証

② 水循環システムバウンダリの有効性確認試験

i) 試験計画策定, 準備作業等

- (a) 試験の目的と概要, 目標
- (b) 試験の流れ
- (c) 一連試験による確認項目

(d) 実規模試験体現状確認試験

- (e) 補修材の事前確認試験
- (f) バウンダリ有効性確認試験
- (g)バウンダリ有効性確認試験(分解調査)

ii) 試験結果

- (a) 試験の実績スケジュール
- (b) 実規模試験体現状確認
- (c) 補修材の事前確認試験
- (d) バウンダリ有効性確認試験
- (e) バウンダリ有効性確認試験(分解調査)

iii) 設備の維持管理

(その他)

試験体の移動, 試験体・試験設備の解体・処分, 利用エリアの原状復旧

(1)② その他

> 試験体の移動

分解調査のため,試験体を試験棟建屋内から建屋外へ移動した。

(2019/7/30)

(1)② その他

試験体・試験設備の解体・処分 試験の最終段階に燃料デブリ模擬粉等の捕捉状況調査のため、試験体 及び試験設備の解体・処分を行った。

(1)② その他

- ▶ 利用エリアの原状復旧
 - JAEA楢葉での実規模試験終了に伴い,利用エリアをJAEA楢葉に返却する為,JAEA楢葉の試験棟内の試験エリアと,試験棟外の解体エリアにおいて原状復旧を実施した。
 - ●仕様は事前にJAEA楢葉と協議して決定し,業者は見積もりの 結果,大熊町にある東双不動産管理株式会社とした。
 - 2019年12月16日に着工し,作業は順調に進み,2020年 2月28日竣工した。
 - 試験エリアは2020年1月31日,解体エリアは2020年2月29日
 JAEA楢葉への返却を完了した。

7. 成果のまとめ

(1) 当初目標に対する達成度

① S/C取水部構築(終了時目標TRL: レベル5)

② 水循環システムバウンダリの有効性確認 (終了時目標TRL: レベル5)

- (2) 課題の整理
 - ① S/C取水部構築

② 水循環システムバウンダリの有効性確認

①S/C取水部構築に関する開発技術の検証(終了時目標TRL: レベル5)

No.	目標	完了したこと 主な課題	到達TRLレベル (自己評価)
1	接続部の遠隔施工技術について、実 規模スケールでの検証が完了し、実機 での手順成立性が確認できていること	水循環PJで開発したプロト機を用いて、S/C取水部構 造構築のうち、延長配管とS/C表面の位置合せから溶 接までの作業範囲の実規模スケール試験を実施。 溶接部の健全性確認の結果、耐圧試験(0.11MPa) で過度な変形のないこと、漏えい試験(0.09MPa)で漏 えいがないこと、VT(直接目視)でオーバーラップ等が認め られたものの、PTでは割れなし、断面マクロではのど厚 10mm以上を満足すること、継手引張試験では、継 手効率0.35以上を満足することを確認。これにより手順 成立性を確認。 【主な課題】 ①座標系の定義に用いる適切なマーキング等の選定 ②スキャンデータの抜け・乱れの解消 ③位置決めツール設置、撤去時間の短縮化 ④ワイヤ曲がりによる狙い位置のずれ ⑤パス毎の溶接不良部の補修溶接の施工方法の確立 ⑥ワイヤ固着の復旧方法の確立 ⑦装置搬入・昇降・撤去作業の作業員被ばく低減対策 ⑧装置搭載カメラで明確に判定するための画質の更なる 向上 ⑨VT不合格部のグラインダ(砥石)による溶接ビード形状 を整える施工方法の確立 ⑪パス毎の溶接不良部の除去・ビード形成の施工方法 の確立	5

IRID

①S/C取水部構築に関する開発技術の検証(終了時目標TRL: レベル5)

No.	目標	完了したこと 主な課題	到達TRLレベル (自己評価)
2	実規模スケールで検証した手順を実機 に適用する際の放射性物質の閉じ込め 性の確保の確認ができていること	S/C取水部構築時に用いる仮設収納容器およびS/C 取水部メンテナンス時に用いるS/C取水セルのバウンダリ 構成や手順の概念検討を実施し,S/C内部放射性物 質(気体)の閉じ込め性確保の見通しを確認。	3
3	実規模スケールで検証した手順を実機 に適用する際の被ばく低減対策の検討 及び課題の抽出ができていること	実規模スケール試験での作業時間等の測定結果に基 づきS/C取水部構築手順のうち,作業員の被ばくに寄 与する手順を抽出。抽出した手順の被ばくに係る要因を 分析し,被ばく低減に向けた対策案,実施に向けての 課題を整理。	4

②水循環システムバウンダリの有効性確認試験(終了時目標TRL: レベル5(*))

No.	目標	完了したこと 主な課題	到達TRLレベル (自己評価)
1	【全体目標】 S/C及びモルタル+補修材でトーラス室S/C内 周側空間を、汚染水、燃料デブリ粉のバウンダ リとして活用できる可能性について実規模ス ケールでの試験で確認できていること。	 JAEA楢葉の実規模試験体の現状を活用し, S/C及びモルタル+補修材でトーラス室 内周側空間を汚染水,燃料デブリ粉のバ ウンダリとして活用できる可能性のある ことを確認した。 必要と考えられる補修材の特性について 事前確認試験を行い,結果を得た。 実機への補修材打設要領として抑えるポ イントを整理し,実規模試験として行い, 目標通りの施工ができる見通しを確認し た。 実規模試験実施の知見を踏まえ,実機施 工に向けた課題を抽出した。 	5(*)

(*):実規模ベースでの補修材のバウンダリ性能の実証を対象とする。実規模向け打設設備は除く。(次次葉 3)項,課題1項目参照) 以下,全体目標達成のための個別目標に対する成果について示す。

②水循環システムバウンダリの有効性確認試験(終了時目標TRL: レベル5)

No.	目標	完了したこと 主な課題	到達TRLレベル (自己評価)
全体目	標達成のための個別目標に対する成果(続き)		
2)	 【実規模試験体の現状確認】 バウンダリの有効性確認の実規模試験の計画や結果評価で必要となる,補修材打設前の実規模試験体の状況調査,現状確認試験を行う。 実規模試験開始前の試験体状況確認のため, 脚部補強材表面のひび割れ位置,ひび割れ幅の実測を行う。 脚部補強材とS/Cシェル,トーラス壁面との隙間寸法を確認する。 S/C内周側の脚部補強材上面のレベルを確認する。 S/C内周側の滞留水水位を実規模試験と同じに設定し,内周側の水が脚部補強材のひび割れ,隙間を経てS/C外周側へ漏えいする速度として,S/C外周側の水位上昇速度を確認する。 	 実規模試験開始前に、以下を実施した。 脚部補強材表面のひび割れ位置、ひび割れ幅、及び脚部補強材とS/Cシェル、トーラス壁面との隙間寸法の実測を行い、実規模試験におけるコアサンプル採取位置や、試験体断面観察位置の設定の検討根拠とした。 S/C内周側の脚部補強材の上面レベルについて、レーザにより計測し、補修材打設前のK/C内周側からS/C外周側への滞留水の漏えい速度について、内周側水位を徐々に上昇させながら、複数回の計測を行い、所定の水位で安定した漏えい速度を取得し、実規模試験時の参照データとした。 	

②水循環システムバウンダリの有効性確認試験(終了時目標TRL: レベル5)

No.	目標	完了したこと 主な課題	到達TRLレベル (自己評価)
全体目	標達成のための個別目標に対する成果(続き)		
3)	 【バウンダリの構築と有効性確認】 S/C構造下部に脚部補強材が打設された状態に対し、補修材を打設することによるバウンダリの有効性確認として以下を行う。 実機への補修材の打設を想定した打設要領、基本的な打設ラインを構築し、それによる実規模試験体への補修材打設を行い、実機施工の見通しを確認する。 実規模試験の結果として、補修材打設後の止水効果、燃料デブリ模擬紛の漏えいについて、目視及び試験データとして確認する。 実規模試験体の分解調査を行い、補修材打設後に脚部補強材ひび割れや脚部補強材と、S/Cシェル構造との境界部に対する補修材の閉塞状況、内周側滞留水や燃料デブリ模擬粉の浸入状況を目視や試験データとして確認する。 	 JAEA楢葉の実規模試験体を活用した実規模 試験として、以下を実施した。 実機施工を念頭におき、実規模試験体で の補修材打設要領を作成し、それにより 管理した、補修材の打設を行い、目標通 りに打設できることを確認した。但し打 設の設備規模は実機を模擬していない(*) 補修材の打設後、S/C内周側からS/C外 周側への漏えい速度確認を継続して行い、 外周側の水位上昇が無いことを確認した。 コロイドとして想定される粒径の燃料デ ブリ模擬紛、蛍光反応を示す着色剤を S/C内周側滞留水に投入し、S/C内周側 から外周側への燃料デブリ模擬紛、滞留 水の漏出が無いことを目視で確認した。 滞留水のサンプリング分析(ICP分析) を行い、外周側への燃料デブリ模擬粉漏 えいが無いことを確認した。 実規模試験体の分解調査として、試験体 排水直後の状況調査、試験体断面確認、 コアサンプル採取による分析調査を実施 した結果、補修材がひび割れや隙間に一 定深さ浸入が確認されること、一方、燃 料デブリ模擬粉の浸入は無いことを確認 した。(蛍光X線分析及びICP分析) 	5 但し, (*)付項目は 3
R	D	©International Research Instit	ute for Nuclear Decommissioning

①S/C取水部構築に関する開発技術の検証

対応方針の凡例

- A: 実規模スケールによる検証が必要
- B: 工場での要素試験で検証可能
- C: 工事に向けたエンジニアリングの中で調整・解決が必要

No.		分類	課題および対応方法	対応方針
1	延長配管の 製作・検査	S/C表面の計測	・座標系の定義に用いる適切なマーキング等の選定 ⇒下げ振りと厚さ1mm程度のマグネット(マーキング)では、位 相差方式でスキャンする装置の特性上から取得できた点群データ が少ないため、実機では下げ振りの代わりにZ軸を設定に使用す る箇所の検討や点群データを多く取得できる十分な厚さがある マーキングを使用することが必要。	С
2	延長配管と S/C表面の位 置合せ	延長配管の ずれ量取得	 ・スキャンデータの抜け・乱れの解消 ⇒ハンディスキャナの可動範囲(撮影可能範囲)の改良および遠隔 化を行い,データの抜け・乱れを解消する。 ・ずれ量算定方法の改善 ⇒ずれ量の算定精度向上のため,算定要領の見直しを行う ※モニタリングツールによるカメラ目視により,+分な精度で位置合せが 可能であったため,ずれ量算定のためのハンディスキャナによるスキャン作業は手順削除することも視野に入れる。 	С
3		位置合せ	 ・位置合せ装置が高く、他装置投入時に干渉する ⇒構成機器・部品のレイアウト変更などにより、投入装置との干渉を回避する ・位置決めツール設置、撤去時間の短縮化 ⇒現場でのケーブル接続箇所を最小限とすることで、現場作業時間を短縮する、または作業性の良い仮設支持材の構造を検討する 	С
4		溶接部の 隙間計測	 ・延長配管の端部のデータを取得できない ・隙間量算定方法の改善 ⇒ハンディスキャナの可動範囲(撮影可能範囲)の改良および遠隔 化を行い,データの抜け・乱れを解消する ※溶接前の隙間確認に対する要求レベルを緩和し、より確実な方法で隙間 量の良否判断を行い、溶接作業を開始する手順への変更も視野に入れる 	С

(2) 課題の整理

①S/C取水部構築に関する開発技術の検証

対応方針の凡例

- A: 実規模スケールによる検証が必要
- B: 工場での要素試験で検証可能
- C: 工事に向けたエンジニアリングの中で調整・解決が必要

No.131

No.	:	分類	課題および対応方法	対応方針
5	延長配管 – S/C表面の溶 接	溶接	 ・ワイヤ曲がりによる狙い位置のずれ ⇒トーチケーブルが溶接装置の中心を通るように配置を見直し, 溶接時の装置回転によるねじれの影響を軽減する ・ケーブル干渉によるカメラ位置のずれ ⇒ケーブル配置およびマネジメント方法を改善する。 ・パス毎の溶接不良部の補修溶接の施工方法の確立 ⇒補修施工方法の検討,専用施工ツールの開発(現状装置改良) ・溶接部表面の結露対策の確立 ⇒溶接前に延長配管内を乾燥空気を供給,S/C継手溶接装置の シールドガス噴射などにより結露除去等 ・ワイヤ固着の復旧方法の確立 >ワイヤ固着した状態でS/C継手溶接装置の引上げ,ワイヤを切断、引抜き後(一部遠隔作業を予定),当該部のビード成形・補修溶接 ・装置搬入・昇降・撤去作業の作業員被ばく低減対策 >実規模スケール試験結果を踏まえ,エンジニアリングで作業人数・時間の短縮化,更なる人力から遠隔化の検討 ・装置搭載カメラで明確に判定するための画質の更なる向上 ⇒オートフォーカス付きカメラなどへ変更(現状装置改良) または、カメラおよび照明配置の見直し・改善 ぶ接中のヒューム飛散対策 ⇒施工中,延長配管頂部に閉止蓋設置+吸引など ・オーバーラップ発生防止対策 >S/C継手溶接装置へのウィービング機能の実装 必要に応じ溶接条件(電流・電圧・溶接速度)の見直し 	C

IRID

①S/C取水部構築に関する開発技術の検証

対応方針の凡例

- A: 実規模スケールによる検証が必要
- B: 工場での要素試験で検証可能
- C: 工事に向けたエンジニアリングの中で調整・解決が必要

No.	分類		課題および対応方法	対応方針
6	延長配管 – S/C表面の溶 接	溶接部処理 (グラインダ)	 ・VT不合格部のグラインダ(砥石)による溶接ビード形状を整え る施工方法の確立 ⇒砥石形状の変更(現状装置改良) ⇒改良グラインダツール形状でのビード形状成形の手順確立 ・ビード処理によるダスト飛散対策の確立 ⇒施工中,延長配管頂部に閉止蓋設置等 ・装置搬入・昇降・撤去作業の作業員被ばく低減対策 →実規模スケール試験結果を踏まえ、エンジニアリングで作業人数・時間の短縮化、更なる人力から遠隔化の検討 ・パス毎の溶接不良部の除去・ビード形成の施工方法の確立 →補修施工方法の検討、専用施工ツールの開発(現状装置改良) 	С
7		溶接部検査 DT(溶接前後)	 ・延長配管の端部のデータを取得できない ・のど厚算定方法の改善 ⇒ハンディスキャナの可動範囲(撮影可能範囲)の改良および遠隔 化を行い,データの抜け・乱れを解消する ※溶接前の隙間確認に対する要求レベルを緩和し、より確実な方法で隙間 量の良否判断を行い、溶接作業を開始する手順への変更も視野に入れる 	С

(2) 課題の整理 A: 実規模スケールによる検証が必要			No.1	33
27K1	2)水循環システムバウンダリの有効性確認試験 C: 工事に向けたエンジニアリングの中			ふましん うちょう シンチン シンチン しんしょう ひょうしん しんしょう ひょうしん ひょうしん ひょうしん しんしょう ひょうしん ひょう ひょうしん ひょうしん ひょう
No.	分類	課題および対応方法	対応方針	
1	補修材打設前の トーラス室内調 査	実機施工の手順として、PCV補修技術PJ及びPCV補修技術実規模PJで開発 した脚部補強材を一定レベルまで打設した後、補修材を打設してバウンダ リを構築する。補修材の打設前に、脚部補強材打設後のS/C内周側のひび割 れ状況の確認、上面レベル確認を行う要領を事前に計画して調査すること が必要である。	С	
2	補修材打設時の バッチャープラ ント計画,専用 攪拌装置の設計 及び高低差を踏 まえた打設方法 の選定	今回の試験で,小規模であるが,打設に必要な基本的な設備構成により, 補修材の打設を行った。補修材は,既存の攪拌装置により3日間をかけて工 場で4.5m ³ を製作した。補修材を現場に移送し,現場で再攪拌して打設を 行った。実機施工においては迅速かつ多量の補修材製作が必要となるため, 実施工事の使用数量を想定したプラント設計,性能確認,製作が必要であ る。長距離流動性確認試験では,補修材性能に大きな変化が無い結果を得 たが,長時間の攪拌,循環に起因するとみられる粒度変化が確認されたた め,攪拌混合方法の検討が必要と考えられる。 また,今回はR/B1階から下に向かって打設したが,打設箇所によっては揚 程の高いポンプの選定や配管方法が課題であり,検討して計画する必要が ある。	A(*)	
3	補修材長距離圧 送時の性状変化 の把握	これまでの補修材圧送距離は10~20m 程度であったが、実施工時においては、100mを超える距離の圧送が要求される可能性がある。長距離圧送する場合には、補修材に加わる圧力が高くなり、脱水等による粘性変化や材料分離の懸念があり、このような性状変化を生じると、補修材打設後の流動性に影響を与える可能性がある。したがって、長距離圧送時における補修材の性状変化の把握が課題であり、試験による確認が必要である。	В	

(*):実規模に対応する規模の打設装置を設計・製作に関し,検証が必要となる。但し,今回処分したトーラス室,S/C構造の実規模試験体を必要とするものでは無い。

(2) 課題の整理				対応方針の凡例 A: 実規模スケールによる検証が必要	No.1	34
27	②水循環システムバウンダリの有効性確認試験 C: 工事に向けたエンジニアリングの中で			『調整・解決が必	婹	
No) .	分類	課題および対応方法		対応方針	
4	, (,	より低い水位で の補修材有効性 の確認	実規模試験として、燃料デブリの密 に投入し、3か月を経た後、分解調 補修材はコロイドサイズを含む粒子 ことが確認された。 今回の試験でS/C内周側に約6.8mG 低い水位で運用する可能性がある。 遮水機能を発揮するまでのプロセス り、改めてラボ試験で確認する必要 補修材の事前確認試験に用いた止か 補修材の上水性や燃料デブリ模擬粉 ことが考えられる。	空を模擬した模擬粉をS/C内周側滞留水 査を行い状況を確認した。結果として、 に対して高い移行抑制効果を発揮する の水頭を作用させたが、実機では、より 水位を低く制御する場合には補修材が (経時変化)が今回と異なる可能性があ 気がある。 く性確認試験装置を使用するなどして、)移行抑制効果の経時的変化を評価する	В	
5	2 	トーラス室外周 側の水質管理要 領の作成	燃料デブリ模擬粉として固体粒子粉 種には、液体にイオンとして含まれ ベントナイトが有する吸着能により があるが、今回の試験では確認して 打設後のS/C内周側からS/C外周側 1号機実機で施工した場合に想定さ 修材打設面積比により補正して推定 グ検討に資することを考えていた。 補修材打設によるバウンダリ構築に は大きく抑制できると考えられるか 下水浸入や、内周側から微量の浸入 管理ラインを準備していくエンジニ	を投入して試験を行ったが、実際のa核 るものもあると考えられる。補修材の り、イオンの漏えいが抑制できる可能性 いない。当初、実規模試験で、補修材 への水の流出速度を把握し、これを基に れる外周側への流出水量速度につき、補 し、今後のシステム側エンジニアリン 今回試験で、漏えい量無の結果となり、 より、S/C内周側から外周側への漏えい 、トーラス室外周側には外壁からの地 、がある場合を想定し、排水設備や水質 アリングが必要と考える。	С	

IRID

対応方針の凡例

- A: 実規模スケールによる検証が必要
- B: 工場での要素試験で検証可能

②水循環システムバウンダリの有効性確認試験 C: 工事に向けたエンジニアリングの中で調整・解決が必要

No.	分類	課題および対応方法	対応方針
6	実機での補修材 打設要領の作成	 実規模試験実施の知見を踏まえ,補修材打設要領を以下のポイントを抑え 作成する。 1)S/C内周側脚部補強材打設後,上面のレベル(水平度)を確認する。 2)脚部補強材上面のひび割れが2.5mm以下であることを確認する。 3)補修材の打設量は,保守的に流動勾配1%^(*)と,上記補強材上面の水平度 確認結果を考慮し,打設点から35m先(最遠方点)で125mmの打設厚 さを確保できる補修材量(体積)を評価し,目標打設量として準備する。 (*)…長距離流動確認試験の結果では打設4日後の流動勾配は0.1% 4)S/C内周側の水位を上げる。(脚部補強材上面より6865mm程度を想定) 5)補修材打設は,実規模試験と同様に,打設重量,比重実測値により打設 体積を確認しつつ行い,打設当日の作業は計画した目標打設量の打設完 了をもって施工完了とする。 6)打設4日後に打設孔の下部において補修材厚さ160mm以上^(**)であるこ とを確認する。 (**)…160=125+35000×0.1/100;流動勾配0.1%を考慮して判断値を設定。 7)打設4日後の打設孔下部の補修材厚さが160mmを下回り,S/C外周側へ の滞留水について以下の調査,対応を行う。 ✓ トーラス室内周側の水深を再確認し,異常が無いことを確認する。 ✓ トーラス室内周側の水水や補修材が漏れていることを確認した 場合は,トーラス室水位をS/C漏えい個所以下に管理した上で, 補修材の追加打設を行う。 ✓ 補修材の偏りや不足等により漏えいが生じている場合は追加の打 設を行う。 	c

(2) 課題の整理			対応方針の凡例 A: 実規模スケールによる検証が必要	No.1	36
	②7火術	 環システムバウ	フンダリの有効性確認試験 C: 工事に向けたエンジニアリングの中で	で調整・解決が必	婹
	No.	分類	課題および対応方法	対応方針	
	7	治工具の検討, 準備	 補修材の打設や,打設後の確認のために,以下の治工具,装置の準備が必要と考える。 ・トーラス室へのホース挿入・引抜の遠隔化 ⇒S/C充填止水やS/C脚部補強材のホース送り装置等を参考とし,設計,準備を行う。 ・打設ポンプの遠隔制御化 ・R/B1階の打設孔から補修材打設後の厚さを計測する装置 ⇒今回実規模試験では、レットロープ先端に補修材上面で抵抗を受ける部材をつけた手動治具により計測した。PCV補修実規模PJでは、類似の原理により、S/C内コンクリート打設高さ計測システムを作り実施しており、これを参考に装置を作り、計測時間短縮を図る。 ・トーラス室内調査ボート ⇒実績のある調査ボートを基に、水中状況を観察する準備をする。 	В	

