

Subsidy Project of Decommissioning and Contaminated Water Management in the FY2016 and FY2017 Supplementary Budgets

R&D for Treatment and Disposal of Solid Radioactive Waste (R&D on Preceding Processing Methods and Analytical Methods)

Study of Waste Characterization, Storage and Management, Disposal, and Waste Stream

Accomplishment Report for FY2018

July 2019

International Research Institute for Nuclear Decommissioning (IRID)

Contents

- 1. Project Overview and Research Approach (P.2 P.9)
- 2. Research on Characterization (P.10 P. 55)
 - Characterization (Project in FY2016 Supplementary Budgets)
 - Study of Simple and Quick Analytical Methods (Project in FY2017 Supplementary Budgets)
- 3. Research on Storage and Management of Fuel Debris (P.56 P.95)
 - Measures for Hydrogen Gas Generation (Project in FY2016 Supplementary Budgets)
 - Measures for Wastes Generated by Fuel Debris Retrieval (Project in FY2016 Supplementary Budgets)
 - Development of Contamination Evaluation Technology for Solid Waste Segregation (Project in FY2017 Supplementary Budgets)
- 4. Research on Disposal of Radioactive Waste(P.96 P.148)
 - Study of disposal concept and Safety Evaluation Methods for Solid Wastes (Project in FY2016 Supplementary Budgets)
 - Measures for Materials with Impact on Disposal (Project in FY2016 Supplementary Budgets)
 - Clarification Items Having Impacts on Safety Evaluation of Solid Waste Disposal / Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal (Project in FY2017 Supplementary Budgets)
- 5. Research on Waste Stream (P.149 P.168)
 - Integration of R&D Results (Study on Establishment of Waste Stream) (Project in FY2016 Supplementary Budgets)
- 6. Schedule and Project Organization (P.169 P.177)
 - Schedule and Project Organization (Project in FY2016 Supplementary Budgets and Project in FY2017 Supplementary Budgets)

1. Project Overview and Research Approach

Background and Purpose of the R&D

- The projects of decommissioning and contaminated water management for the Fukushima Daiichi Nuclear Power Station (NPS) of Tokyo Electric Power Company, Inc. (hereinafter, TEPCO) are ongoing according to "The Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO's Fukushima Daiichi NPS" and "The Progress Status and Future Challenges of the Mid-and-Long-Term Roadmap toward the Decommissioning of TEPCO's Fukushima Daiichi NPS"^{*1}.
- Under such circumstances, research and development (R&D) of technologies for solid waste treatment and disposal was performed for nuclear decommissioning and contaminated water management according to the Mid-and-Long-Term Roadmap and the "Technical Strategic Plan 2017 for Decommissioning of the Fukushima Daiichi NPS of TEPCO Holdings, Inc."^{*2}.

*1 The 39th Session of Team for Countermeasures for Decommissioning and Contaminated Water Treatment/Secretariat Meeting (2017).

^{*2} Technical Strategic Plan 2017 for Decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc., established by the Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF) in 2017.

Mid-and-Long-Term Roadmap Policy

- The basic concept of waste management^{*} (excerpts from description of research and development (R&D), partly reworded)
 - The <u>characteristics</u> of solid waste, such as nuclide composition and activity concentration, <u>need</u>
 <u>to be understood</u> to study solid waste treatment and disposal methods.
 - Generated solid waste shall be <u>stored and managed by safe and rational methods and</u> procedures based on their characteristics.
 - A method to select waste stabilization and solidification methods (preceding processing) on a rational basis shall be established, and preceding processing methods shall be selected by the established method before determining the technical requirements for disposal, in order to ensure the safety of solid waste storage and management.
 - To promote effective R&D on solid waste treatment and disposal, R&D projects related to the characterization, treatment, and disposal of solid waste work closely together. R&D is promoted by the sharing of research and issues among R&D teams, overviewing all activities of solid waste management, and identifying required R&D tasks.

The waste treatment and disposal measures, and their technical prospect of safety shall be proposed by around FY2021.

*Revised on September 26, 2017

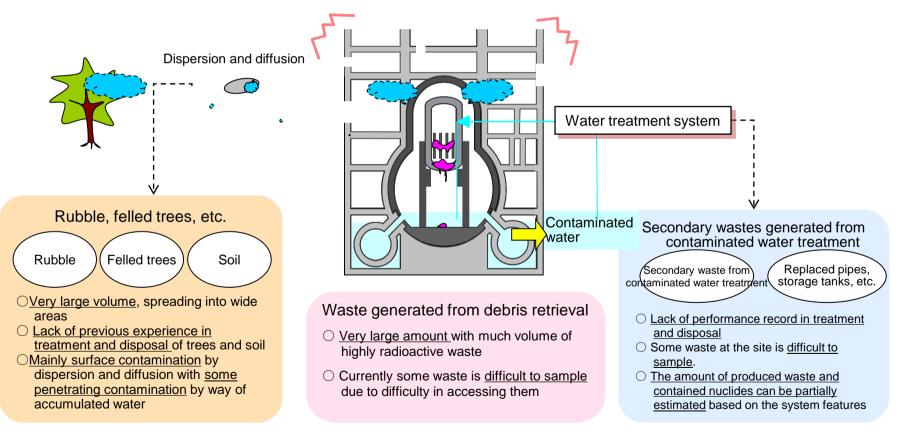
Policy of Technical Strategic Plan 2017

- □ Strategic proposals for solid waste treatment and disposal* (partly reworded)
 - Focusing on waste characterization, storage, management, and preceding processing methods as predisposal management until the prospect of disposal can be obtained

Item	R&D task
Promotion of characterization	 Establishment of a solid waste characterization method that complementarily combines evaluation data based on analysis data and migration models Optimization of analysis sample numbers, the simplification and speeding-up of analytical methods, etc.
Thorough storage and management	 Study on estimation methods and management of the volume of hydrogen gas produced from the secondary wastes generated from contaminated water treatment during the storage and management of solid waste Study on methods to store and manage solid wastes generated by fuel debris retrieval
Establishment of a method for selecting the preceding processing method considering the possibility of disposal	Establishment of a method for selecting waste treatment method based on safety evaluation results of in-process wastes for multiple disposal methods
Promotion of effective R&D by overviewing all activities of solid waste management	 R&D is promoted by sharing research progress and issues among projects, overviewing all activities of solid waste management, and identifying required R&D tasks

* Technical Strategic Plan 2017 for Decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc., by Nuclear Damage Compensation and Decommissioning Facilitation Corporation in 2017.

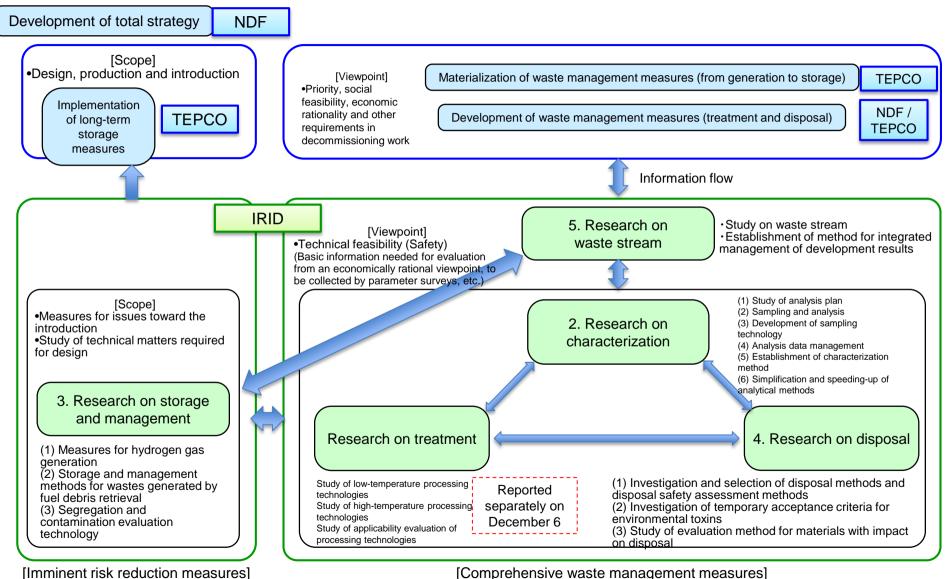
R&D Planning and Implementation


- Specific plans were established for each of the four main R&D items (characterization of solid waste, predisposal management of solid waste, study of disposal concept and safety evaluation methods for solid waste, and integration of R&D results) respectively.
 - The plans were developed based on the characteristics of waste.
 - The plans were created while referring to the process chart of the Technical Strategic Plan 2017 to ensure steady implementation of the Plan and to achieve the goals.
 - The plans were implemented under appropriate role assignments and with active information exchange to enable the concurrent progress of R&D activities.
- Assessment indexes for achieving goals were established and implemented.

7

Characteristics of Waste Generated by the Fukushima Daiichi Accident (Estimation)

- <u>Waste generated out of control</u> due to the accident
- Contamination originated from nuclear fuel in the reactor core of Unit 1 to Unit 3^{*}
- <u>Difficulty in estimating the amount of waste produced</u> with the varying status of decommissioning work
- <u>Extremely limited data</u> due to an extensive contamination area and high-radiation locations (particularly for the composition of nuclides with long half-life)

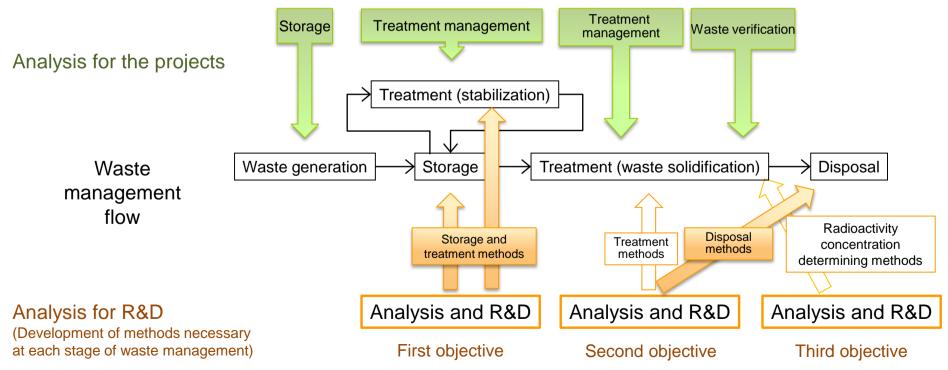

*Contamination originated from activated materials and reactor operation waste may be included.

8

1. Project Overview and Research Approach

- Role-sharing among Relevant Organizations, and Scope and Viewpoint of Study -

[Comprehensive waste management measures]



2. Research on Characterization

Objective of Analysis

- Analysis is essential for the implementation of the decommissioning projects, including waste management, and for their R&D.
- Waste management requires analysis with different objectives for each stage, broadly classified into storage, treatment, and disposal. The main objective is to establish storage and treatment methods, disposal methods, and activity concentration determining methods.
- In this project, analysis was conducted with the main objective of ensuring safety for the stabilization (preceding processing) and disposal of secondary waste generated from contaminated water treatment.

Contents of Report

- (1) Study of Analysis Plan
- (2) Sampling and analysis
 - ① Sampling and transportation

(4) Analysis data management

- ② Conducting analyses
- (3) Development of sampling technology
 - ① Sampling of secondary wastes generated from contaminated water treatment, including sludge
 - ② Study of sampling methods in the reactor building

- (5) Establishment of characterization method
 - ① Study on the migration behavior and the contamination mechanism of radionuclides
 - ^② Study of waste classification based on analysis data
 - ③ Study on the representativeness of analysis data
 - ④ Accuracy improvement of analytical evaluation methods
 - S Summary of comprehensive inventory evaluation
 - © Data collection methods to improve accuracy
- (6) Simplification and speeding-up of analytical methods
 - ① Study on more efficient and reasonable analytical methods
 - $\ensuremath{\textcircled{O}}$ Study of simple and quick analytical methods

Topics / Fieral year				2nd Phase (up to the commencement of fue	el debris retrieval)	
Topics / Fiscal year	2014	2015	2016	2017	2018	After 2019
Major events on the current Roadmap				shment of basic concept of sing/disposal for solid radioactive wastes ∇	Technical prospec /disposal measure	
<research and="" development="" of<br="">Processing and Disposal of Solid Waste> <u>I . Characterization</u> 1.Collection/management, etc. of</research>	of rubb incinera high do	ation of s le, ALPS, ation ash se sampl on of dat	soil, and e, and	Efficiency of sampling/analysis method incineration ash, sample in R/B and hig establishment of database		Response to progress of sampling/analysis
2.Accuracy improvement of analytic evaluation method	method water tr	pment of I for seco reatment trees and	ndary twaste	tion Accuracy improvement of analytic inven reflecting the variation of analysis result		Upgrading of evaluation metho
3.Comprehensive report of inventory evaluation	Making/update of analysis plan		eof	Comprehensive evaluation of the estimate of analysis data and radioactivit inventory/estimation of inventory/confirmation of update flow		
4.Response to disposal influence material, etc.				Rearranging of the concept about temporary ac concerning management before the disposal ar		Preparation of analysis evaluatio of influence

Correspondence of action plan with the Technical Strategic Plan 2017^{*}

* Technical Strategic Plan 2017 for Decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings, Inc. (established by the Nuclear Damage Compensation and Decommissioning Facilitation Corporation (hereinafter referred to as NDF) in 2017).

(1) Study of Analysis Plan (1/2)

FY	Implementation plan	Goal achievement index
2017	accumulated to date and knowledge about various contamination behaviors, and the foreseeable	 Development of a mid-and-long- term analysis plan. Development of an annual analysis plan.
2018	An annual analysis plan is developed.	 Development of an annual analysis plan.

□ The annual plan is to collect, transport, and analyze samples of rubble, contaminated water, secondary waste generated from contaminated water treatment, and soil. It is being implemented continuously since the last fiscal year (Table 1).

□ The analysis data was reported at the Secretariat Meeting twice (at the 56th and 60th sessions). A report is being prepared for the analyzed data.

Table 1. Analysis plan for FY2018 (Status of transportation and analysis) (1/2)

Classificatior	Туре	Sample	No. of samples	Analysis facility*1	Transport	Analysis status
Rubble Floor and		amples obtained by the boring of concrete on the 1st to 5th	8	NDC	Dec 15, 2017	Reported at 60th session 17
	Samples associated with decontaminatio n tests	Materials used for decontaminating floors and walls in R/Bs of Unit 1 to Unit 3 (flannel cloth, strippable paint, boring core, etc.)	JAEA, NS	SRI Mar 29, 20	18 Reported	at 65th session
	Rubble	Blockages in Unit 2 TIP piping, PCV deposits in Unit 1		NFD	-*2	Reported at 65th session
		Rubble in and around R/Bs, rubble of stored cover soil (radioactivity distribution)	5	JAEA, Oarai	Feb 10, 2017	Reported at 56tl session
		Rubble of R/Bs, rubble of stored cover soil, sand gravel of turbine buildings (radioactivity distribution)	5	JAEA, Oarai	Feb 27, 2018	Analysis in proces
		Concrete of the No.4 cover soil tank (radioactivity distribution)	12	JAEA, Oarai	Feb 14, 2019	Analysis in proces

*1 JAEA: Japan Atomic Energy Agency, NSRI: Nuclear Science Research Institute, Oarai: Oarai Research and Development Institute, NDC: Nuclear Development Corporation, NFD: Nippon Nuclear Fuel Development Co., Ltd. *2 Transported previously during other projects.

Items in red text are samples collected in

this project

(1) Study of Analysis Plan (2/2)

Table. Analysis Plan for FY2018 (Status of transportation and analysis, samples other than rubble)

Classificati on	Туре	Sample	Number of samples	Analysis facility ^{*1}	Transport	Analysis status
Dismantling	Rubble	Unit 2 R/B (roof block, coping, sand layer)	9	NDC	Sept 14, 2018	In process
		Unit 2 R/B (Core samples obtained by the boring of outer wall)	12	JAEA, NSRI	Dec 12, 2018	In process
	Sludge	Sludge from Unit 2 to Unit 4 Turbine Buildings	10	NDC	Sept 14, 2018	In process
Contaminated water	Stagnant water	Stagnant water in Unit 1 to Unit 3 R/Bs and centralized radwaste building (centralized RW)	8	JAEA, NCL	Dec 12, 2018	In process
	Treated water	Treated water from existing ALPS	11	JAEA, NSRI	Oct 4, 2017, Feb 27, 2018	Reported at 56th session
		Treated water from expanded ALPS	12	NDC	Dec 15, 2017	Reported at 60th session
		Treated water from SARRY	3	JAEA, NSRI	Feb 14, 2019	
	Stagnant and contaminated water	Stagnant water in the R/Bs and the centralized RW building, treated water from KURION and SARRY, etc. (uranium analysis)	19	NFD	Nov 10, 2017	Reported at 56th session
		Stagnant water in the R/Bs and the centralized RW building, treated water from KURION and SARRY, etc. (Np analysis)*2	10	NFD	Same as above	Ended (Reporting planned)
Secondary wastes generated from	Sludge	Sludge from decontamination systems, clear supernatant liquid	2	JAEA, NCL	Nov 21, 2017	Reported at 56th session
contaminated water treatment	Adsorbent	Cerium oxide, activated carbon and chelate resin 2 used in the existing ALPS	3	JAEA, NCL	Oct 4, 2017	In process
		Titanium oxide used in the existing and expanded ALPS	2	JAEA, NCL	Dec 12, 2018	In process
Soil	•	Surface layer of areas F, H, J, and K, H4 tank area (measurement points A and B)	6	NDC	Dec 15, 2017	Reported at 60th session
		Areas K and P, H4 tank area (measurement point A) (particle size vs radioactivity concentration)	3	JAEA, NSRI	Oct 4, 2017	Reported at 56th session

Items in red text are samples collected in this project

*1 JAEA: Japan Atomic Energy Agency, NSRI: Nuclear Science Research Institute, NCL: Nuclear Fuel Cycle Engineering Laboratories, NDC: Nuclear Development Corporation, NFD: Nippon Nuclear Fuel Development Co., Ltd.. *2 Some of the stagnant water in the R/B and centralized RW building.

(2) Sampling and analysis ① Sampling and transportation – Collection of treated water samples –

FY	Implementation plan	Goal achievement index
2017 2018	 Sampling of slurries and adsorbents produced by the operation of existing and expanded multi-nuclide removal systems and treated water produced by the operation of cesium adsorption apparatus, secondary cesium adsorption apparatus (SARRY), and existing and expanded multi-nuclide removal systems, are performed in sequence according to the analysis plan and depending on the status of readiness for the sampling at target locations, which is determined by considering the reliability of the sampling method and the estimate of exposure dose associated with the sampling. In addition, available samples are collected in cooperation with on-site operations and transported to analysis facilities 	 Samples are collected based on the annual analysis plan and transported to analysis facilities.

Collection of samples of secondary waste generated from contaminated water treatment, is difficult due to the high dose rate, and hence for inventory estimation, water samples were collected from operating water treatment facilities. (Table 1)

Table 1. Results of water samples collected from contaminated water treatment facilities

			Results (FY201	7)	Results (FY2018)	
Sampling target		Sampling plan Sampling date		Number of samples	Sampling date	Number of samples
			Sept 4, 2017	4	Aug 29, 2018	3
KURION		Thrice a year	Dec 12, 2017	3	-	-
			Feb 20, 2018	3	-	-
			Jul 25, 2017	2	June 13, 2018	2
SARRY		Thrice a year	Nov 15, 2017	2	Oct 10, 2018	2
			Mar 15, 2018	2	Jan 29, 2019	2
	A system		-	-	June 15, 2018	10
Existing ALPS	B system	Thrice a year from any one of	-	-	Nov 22, 2018	10
	C system	A, B, or C systems	Aug 30, 2017	11	(Planned to be collected within 1 year)	-
	Asuctom		Aug 30, 2017	10	June 15, 2018	10
Expanded AL DO	A system	Twice a year	Dec 1, 2017	10	Jan 22, 2019	10
Expanded ALPS	B system	Once a year from any one of B	-	-	June 15, 2018	11
	C system	or C systems	Aug 30, 2017	11	-	-

(2) Sampling and analysis ① Sampling and transportation – Collection of ALPS slurry and adsorbent samples –

- Samples of secondary waste were collected from the Multi-nuclide Removal System (ALPS) (slurries and adsorbents). The slurries and adsorbents discharged from the operating processes were collected, along with the slurries and adsorbents stored in the No.2 and No.3 storage facilities which were collected from the high integrity containers (HIC). (Figure 1)
- Iron coprecipitation slurry (27 samples), carbonate slurry (9 samples), and adsorbents (24 samples) were collected. (Table 1, 2)
 - The exposure dose used for operation planning was calculated on the basis of the slurry analysis data (moisture content, etc.) collected in this project.

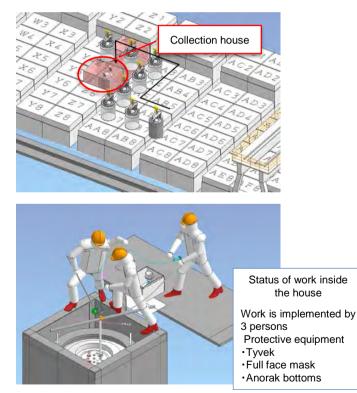


Figure 1. Collection from storage container (HIC) in the No.2 storage facility Table 2 .Results of secondary waste collected from water treatment facilities in operation

	Sampling target			;
Contaminated water treatment facilities		Туре	Sampling date	Number of samples
Existing ALPS	A, B and C	Silver zeolite	Sept 05, 2017	3
systems		Titanium oxide	Aug 29, 2017	3
European de st	A system	Carbonate slurry	May 28, 2018	9
Expanded ALPS	B and C systems	Titanium oxide	Nov 27, 2017	3

Table 3. Results of secondary waste collected from storage containers (HIC)

	Sampling	target	Resul	ts
Contamina treatment		Туре	Sampling date	Number of samples
			Oct 12, 2018	3
			Oct 15, 2018	3
			Oct 16, 2018	1
		Iron coprecipitation slurry	Oct 17, 2018	1
			Oct 18, 2018	1
Existing ALPS systems	A, B, and C		Oct 26, 2018	9
			Oct 29, 2018	9
		Titanium hydrochloride 1	Oct 25, 2018	3
		Titanium hydrochloride 2	Oct 19, 2018	3
		Titanium oxide	Oct 22, 2018	3
Expanded	A system	Titanium hydrochloride 1	Oct 24, 2018	3
ALPS	B and C systems	Cerium oxide	Oct 23, 2018	3

(2) Sampling and analysis ① Sampling and transportation – Collection of samples from Unit 4 –

Samples of painted concrete from the building floor and samples of painted steel plates from distribution switchboards were collected from the 1st to 4th floors of Unit 4 R/B. (Table 1) (Figure 1)
 The feasibility of sampling by coring through the concrete floor inside the building and retrieving the cut core, using a dedicated coring tool that was developed in FY2017 considering remote operation, was verified. (Figure 2)

Figure 1. Drilling tool manufactured considering remote operation and the collected painted concrete floor sample

(a) Painted concrete floor

(b) Painted steel plates from distribution switchboards

Figure 2. Collected samples

Table 1. Results of samples collected from inside Unit 4 R/B

Sampling	Туре	Results		
locations	1900	Sampling date	Quantity	
	Painted concrete floor	Jul 05, 2017 Jul 06, 2017	5 locations x 2 samples	
First floor	Painted steel plates from distribution switchboards	Jul 05, 2017	1 location x 2 samples	
Second floor	Painted concrete floor	Jul 04, 2017 Jul 05, 2017	5 locations x 2 samples	
	Painted steel plates from distribution switchboards	Jul 05, 2017	1 location x 2 samples	
	Painted concrete floor	Jul 07, 2017	2 locations x 2 samples	
Third floor	Painted steel plates from distribution switchboards	Jul 07, 2017	1 location x 2 samples	
Fourth floor	Painted concrete floor	Jul 10, 2017	2 locations x 2 samples	
	Painted steel plates from distribution switchboards	Jul 10, 2017	1 location x 2 samples	

(2) Sampling and analysis ① Sampling and transportation – Results of transportation –

- Analysis samples were transported to an analysis facility located in the Ibaraki area in three separate batches (Table 1).
- The samples remaining after the analysis were to be transported back from the Ibaraki analysis facility to Fukushima Daiichi Nuclear Power Station (1F), but the plan was not implemented.

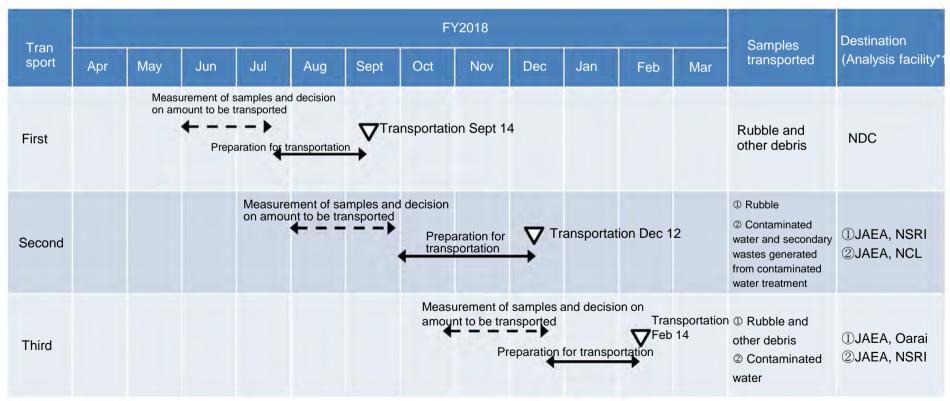


Table 1. Transportation of analysis samples outside the 1F plant

*1 JAEA: Japan Atomic Energy Agency, NSRI: Nuclear Science Research Institute, NCL: Nuclear Fuel Cycle Engineering Laboratories, Oarai: Oarai Research and Development Institute, NDC: Nuclear Development Corporation

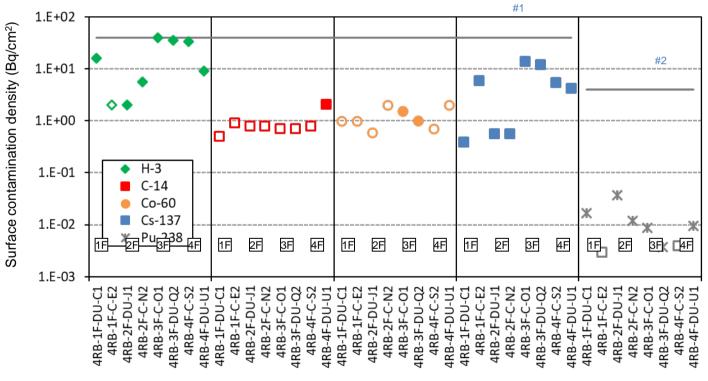
ТО

(2) Sampling and analysis ⁽²⁾ Conducting analyses

FY	Implementation plan	Goal achievement index
2017 2018	 Sample analysis is performed according to the analysis plan. Besides activity concentration, other characteristics necessary for the storage and management of waste are be analyzed. 	 Implementation of analysis and the reporting of analysis data in line with the annual analysis plan.

 Rubble, contaminated water, secondary waste generated from contaminated water treatment, and soil were analyzed mainly from the viewpoint of treatment (stabilization) and disposal (contamination behavior of nuclides). (Table 1)

Table 1. Overview of analysis (Results presented on the following slides)


Classification	Sample	Treatment (stabilization)	Disposal (contamination behavior of nuclides)
Rubble and waste from dismantlement	Unit 4 boring core		 Location dependence of nuclide composition
	Sludge (contained in stagnant water)		 Nuclide composition
Contaminated water	ALPS		 Nuclide composition of adsorbents
	Stagnant water		 Behavior of uranium and Np
Secondary wastes generated from contaminated water treatment	Sludge from decontamination systems	 Elemental composition, particle size, etc. 	Nuclide composition
	ALPS adsorbents		Nuclide composition
Soil			 Particle size and location dependence of nuclide composition

20

(2) Sampling and analysis ② Conducting analyses – Boring core in Unit 4 R/B (1/2) –

- The core samples obtained by the boring of the floor on 1st to 4th floors of Unit 4 R/B were analyzed (Figure 1).
- ¹³⁷Cs was detected in all the samples, while ³H and ²³⁸Pu were detected in the samples from the 1st floor through to the 4th floor. The contamination level is below the controlled area standards (Figure 2).
- The contamination source is Unit 3, and the contamination on the 1st to 4th floors seems to be the same.

Figure 2. Concentration of detected nuclides

21

Note) Value corrected for attenuation on March 11, 2011. The white-fill plot points indicate values less than the lower detectable limit. Straight lines #1 and #2 indicate the surface concentration limits (40 Bq/cm² for radioisotopes that do not discharge alpha rays and 4 Bq/cm² for radioisotopes that discharge alpha rays) of objects that may be touched by people, such as walls in controlled areas, as stipulated by law.

Figure 1 Appearance of concrete core (4RB-1F-C-E2)

(2) Sampling and analysis ② Conducting analyses – Boring core in Unit 4 R/B (2/2) –

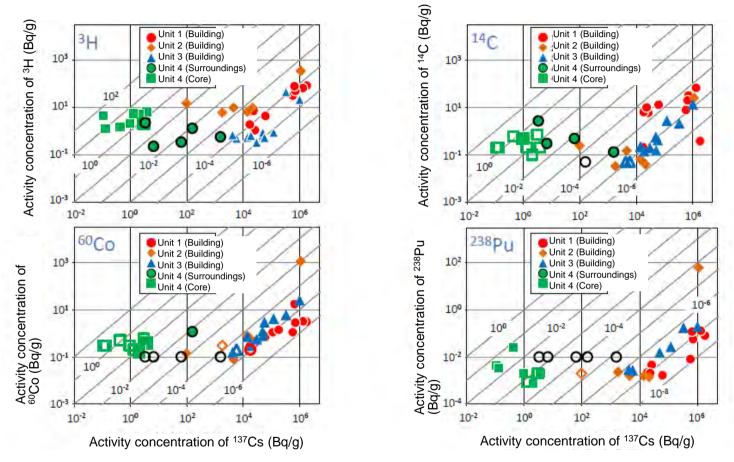


Figure 1 Concentration of nuclides detected from the rubble (boring core) samples collected from inside and around the R/B (Graph plotted for 137Cs*)

* White-fill plot points indicate that the values of nuclides shown on the vertical axis are lower than the detectable limit. The diagonal lines represent the concentration ratio of two nuclides.

(2) Sampling and analysis ② Conducting analyses – Sludge contained in stagnant water –

- The sludge contained in stagnant water was analyzed to understand the contamination caused by contact with contaminated water (Figure 1).
- The α nuclides were detected in more sludge samples than in stagnant water. 154Eu was also detected in the sludge from Unit 3 Turbine Building, but the α nuclide concentration tended to be higher than other sludge (Figure 2).
- The elemental composition of sludge has a high ratio of iron, aluminum, and silicon, and there is a possibility that α nuclides are incorporated in ferric hydroxide or in the clayey components.

Stagnant water samples

Sludge separated from water

Figure 1. Appearance of stagnant water and sludge samples (LI-1WB8-1)

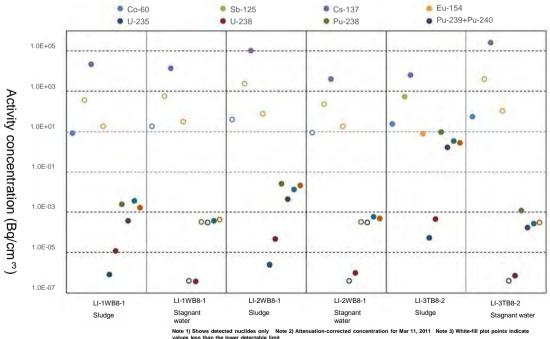


Figure 2. Concentration of nuclides detected from the stagnant water and sludge collected from the basement of each building

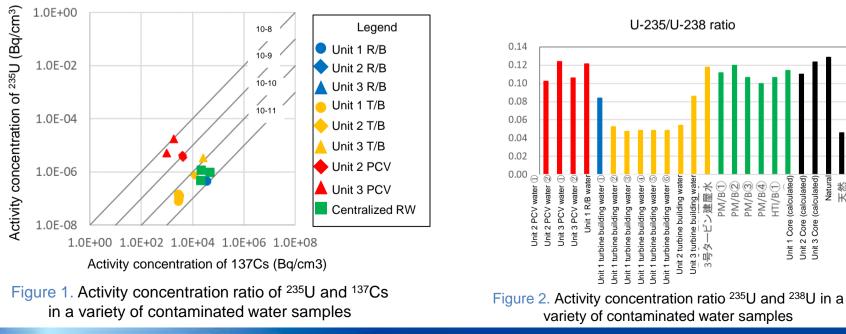

IRID

(2) Sampling and analysis ② Conducting analyses – Treated water from the Multi-nuclide Removal System (ALPS) –

- The water collected from the ALPS process was analyzed to estimate the radioactivity of secondary waste produced by APLS*.
- The main nuclides that are removed and adsorbed by each process and adsorbent are as follows:
 - Carbonate precipitates: ⁶³Ni, ⁹⁰Sr
 - Activated carbon (first half): ⁶⁰Co
 - Titanate 1: 90Sr
 - Titanium oxide: ⁹⁰Sr, ¹²⁵Sb
 - Silver zeolite: ⁹⁰Sr
 - Titanate 2: ¹³⁷Cs

R

- Activated carbon (latter half): ⁶⁰Co, ⁹⁹Tc
- The concentration at the outlet of the adsorption vessel may be higher than the concentration at the inlet. Verification requires further collection of data.
- ¹⁰⁶Ru, ¹²⁹I, ¹⁵⁴Eu, ²³⁵U and ²³⁹⁺²⁴⁰Pu were not detected in any of the samples.



gure. Activity concentration at the main equipment outlets ALPS (expanded B system)

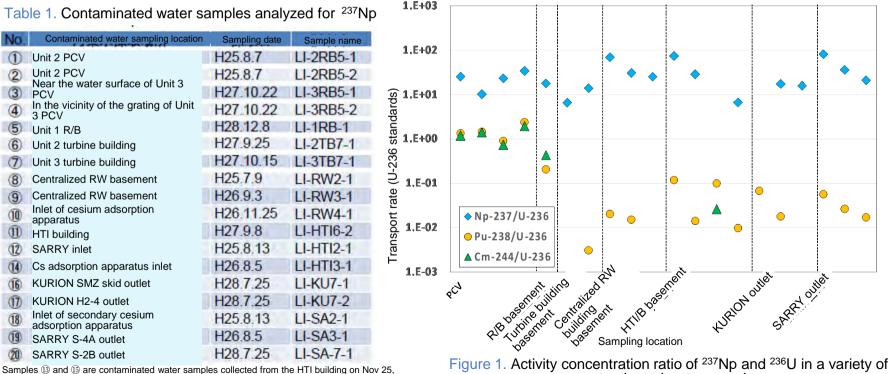
24

(2) Sampling and analysis ⁽²⁾ Conducting analyses - Analysis of uranium in contaminated water -

- The U isotopic composition was analyzed for a variety of contaminated water samples in order to understand the contamination behavior of uranium*.
- The ²³⁵U/ ¹³⁷Cs ratio in the stagnant water in Unit 2 and Unit 3 PCVs is about a digit larger than that in the stagnant water in R/B, T/B, and centralized RW building. (Figure 1)
- The ratio of ²³⁵U/ ²³⁸U is often closer to the value of damaged fuel than to the natural uranium ratio. The ratio is small for Unit 1 R/B and T/B and Unit 2 T/B, and the contribution of natural uranium is relatively large. (Figure 2)
- The ²³⁵U/ ²³⁸U ratio varies depending on the sampling location and falls between the damaged fuel to natural uranium ratio. The source of uranium in the stagnant water is believed to be the damaged fuel and the contribution of natural components contained in various materials.

RI

* The 56th Session of Team for Countermeasures for Decommissioning and Contaminated Water Treatment / Secretariat Meeting, Jul 26, 2018.

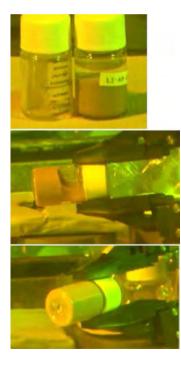

Core (calculated) Core (calculated)

Natur 天然

Core (calculated)

(2) Sampling and analysis ② Conducting analyses – Analysis of Np in contaminated water –

- The Np concentration in a variety of contaminated water samples was analyzed in order to understand the contamination behavior of Np, and the difference with U and Pu was studied (Table 1).
- U, Pu, and Cm have almost the same transport rate in the stagnant water inside Unit 2 and Unit 3 PCVs. Meanwhile, Np in Unit 2 and Unit 3 shows about a digit higher transport rate than the other α nuclides, which suggests that Np has higher solubility than other α nuclides (Figure 1).
- The transport rate of Pu is reduced to about 1/100 in the stagnant water after passing through the Turbine Building. It is presumed that Pu in the turbine building has been removed by sedimentation or adsorption (Figure 1).


Samples (1) and (1) are contaminated water samples collected from the HTI building on Nov 25, 2014 and from KURION outlet on Mar 9, 2015 respectively. 237Np analysis was not carried out for these samples.

(2) Sampling and analysis ⁽²⁾ Conducting analyses

- Analysis of sludge from decontamination systems (1/3) -

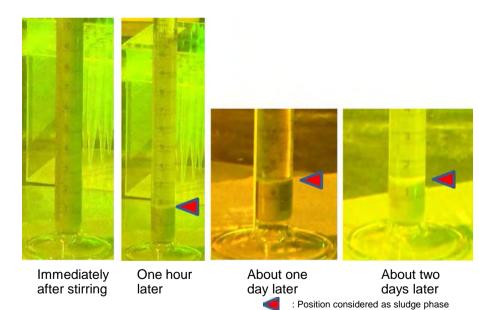
- The fluidity (Figure 1) and radioactivity of the sludge from decontamination systems, which is one of the secondary wastes generated from contaminated water treatment*, was analyzed for the study of predisposal management (dehydration and transfer methods) (Table 1 on page 28).
- One mL of solid-liquid mixed sludge sample and 10 mL of supernatant liquid was put into a stoppered measuring cylinder (10 mL, inner diameter about 11 mm Φ, height about 11 cm). The measuring cylinder was repeatedly turned over to stir the contents and left standing to observe the sedimentation. The temporal change in the height of the phase boundary was measured. (Figure 2)

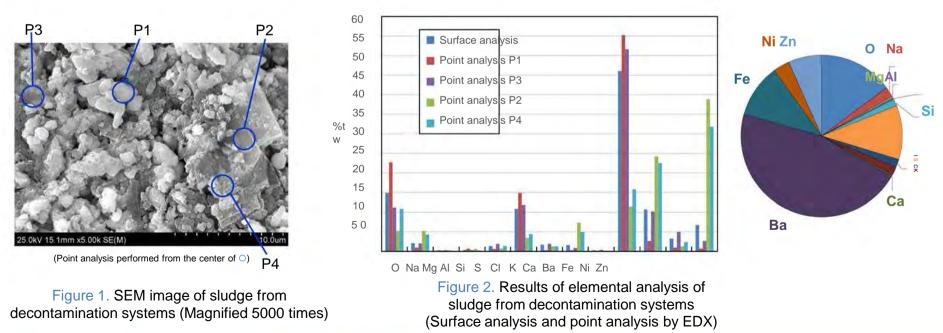
① When left standing, the sludge settled and a supernatant layer appeared.

Iudge did not flow even whenIudge van the vial was turned sideways.

③ As the vial was stirred, the solids
 and supernatant liquid mixed gradually.

Figure 1. Flow in the vial




Figure 2. Sedimentation of the sludge

boundary

(2) Sampling and analysis ② Conducting analyses – Analysis of sludge from decontamination systems (2/3) –

- □ The shape of the particles in the sludge from decontamination systems was observed by means of SEM-EDX and the elemental composition was measured to study predisposal management (dehydration and transfer methods)*.
- One mL of pure water was added to the vial containing the sludge, the contents were stirred and dispersed. Some of this was taken and dropped on a filter, dried, and then platinum was evaporated to obtain a sample for SEM-EDX, which was measured. The particles constituting the sludge showed multiple shapes and were confirmed to be a mixture of components with different compositions (Figure 1).
- From the results of the EDX surface analysis, it was believed that Ba and S were present in large amounts, and BaSO4 accounted for 60-70%. The amount of ferrocyanide was estimated to be second largest. Besides this, Zn was detected (Figure 2).

(2) Sampling and analysis 2 Conducting analyses – Analysis of sludge from decontamination systems (3/3) –

- The radionuclide concentration of the sludge from decontamination systems was analyzed to study disposal methods. Since sludge is insoluble, it was dissolved in a phased manner and then analyzed (Figure 1).
- The analysis revealed that the main nuclide was the β-rays emitting ⁹⁰Sr, while the sludge also contained ¹³⁷Cs (daughter product ^{137m}Ba), ¹³⁴Cs, and ¹²⁵Sb as the main γ-rays emitting nuclides, and ²³⁸Pu as the α-rays emitting nuclide (Table 1). TEPCO is using the data to study the sludge transport and treatment methods.

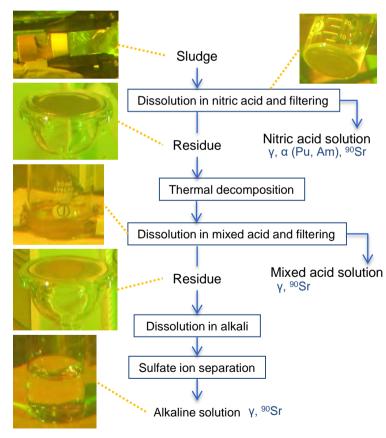


Figure 1. Pretreatment method of the sludge from decontamination systems and the appearance of the sample

Comple nome	Activity concentration [Bq/cm ³]#1			
Sample name	⁵⁴ Mn (About 312 days)	⁶⁰ Co (About 5.3 years)	¹²⁵ Sb (About 2.8 years)	
LI-AR-SL1 #2 (Nitric acid solution)	(4.1±0.3)x10 ⁴	$(4.1 \pm 0.1) \times 10^3$	(2.6±0.1)x10 ⁴	
Same as above (Mixed acid solution)	< 1x10 ⁴	$(1.8 \pm 0.2) \times 10^3$	< 4x10 ⁴ (1.1x10 ³) ^{#3}	
Same as above (Alkaline solution)	< 4x10 ⁴	< 2x10 ²	< 5x10 ³	
LI-AR-SL1	(4.1 ± 0.3) x10 ⁴	$(5.9 \pm 0.2) \times 10^3$	(2.6±0.1)x10 ⁴	

Table 1. Results of activity concentration analysis of sludge from decontamination systems

Comple nome	Activity concentration [Bq/cm ³]#1			
Sample name	¹³⁷ Cs (About 30 years)	⁹⁰ Sr (About 29 years)	²³⁸ Pu ^{#4} (About 88 years)	
LI-AR-SL1 (Nitric acid solution)	(2.7±0.1)x10 ⁴	(3.6±0.1)x10 ⁶	(1.4±0.4)x10 ⁻²	
Same as above (Mixed acid solution)	(6.5±0.1)x10 ⁶	(4.3±0.1)x10 ⁶	-	
Same as above (Alkaline solution) (6.3 ± 0.1) x10 ⁵		(5.8 ± 0.1) x10 ⁷	-	
LI-AR-SL1	(7.1±0.1)x10 ⁶	$(6.6 \pm 0.1) \times 10^7$	(1.4±0.4)x10 ⁻²	

#1 Activity concentration was corrected on Mar 11, 2011. The numerical value after \pm in the analysis value is the calculation error. The sum total is the addition of the quantitative values. The activity concentration is the value per 1 cm³ of the sludge. #2 LI-AR-SL1-3 was analyzed. #3 Reference value because yield in Cs removal treatment is not corrected. #4 LI-AR-SL1-2 was analyzed.

29

(2) Sampling and analysis ② Conducting analyses – Analysis of the adsorbents from the Multi-nuclide Removal System (ALPS) –

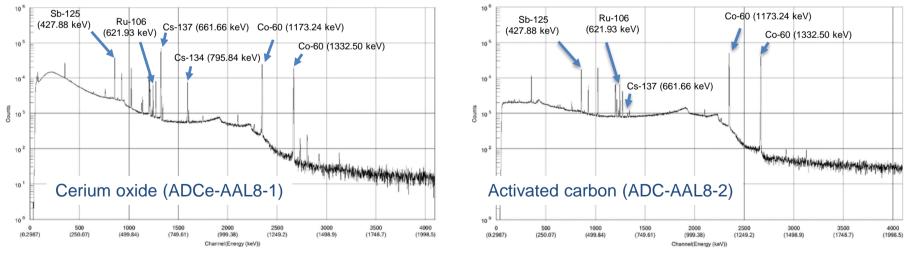
- The γ-rays emitting nuclides in cerium oxide and activated carbon were analyzed from among the adsorbents from expanded ALPS to study the disposal methods. (Table 1, Figure 1)
- ⁶⁰Co, ¹⁰⁶Ru (daughter product ¹⁰⁶Rh), ¹²⁵Sb, ¹³⁴Cs and ¹³⁷Cs (daughter product ^{137m}Ba) were detected as the main γ-rays emitting nuclides[#]. (Figure 2)
- Dissolution of samples is underway to analyze α-rays and β-rays emitting nuclides. Dissolution generates residues, so the method to be used for dissolving the samples was studied.

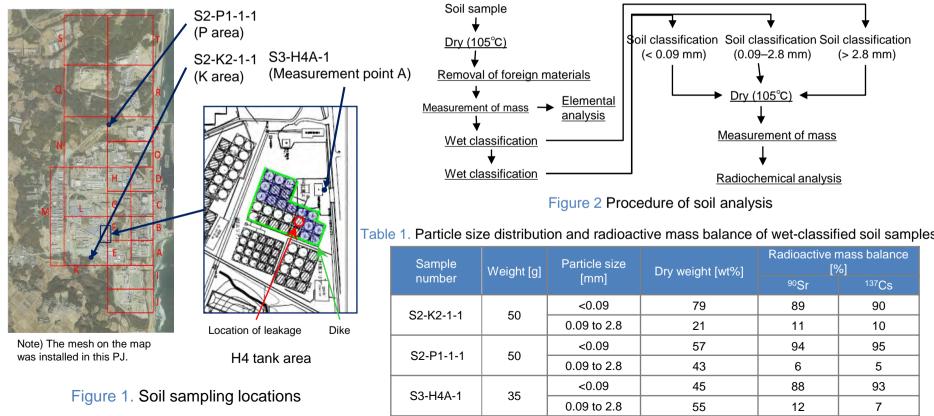
Table 1. Analysis samples for ALPS adsorbents

Sample name	Sample number	Sampling locations	Mass (g)
Cerium oxide	ADCe-AAL8-1	Expanded ALPS BC system	23
Activated carbon	ADC-AAL8-2	Expanded ALPS BC system	16

Left: Cerium oxide Right: Activated carbon

Figure 1. Appearance of the analysis samples

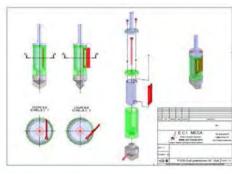


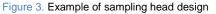

Figure 2. γ-Ray spectrum of adsorbents

Samples in 50 mL vials were measured. Since this is a solid sample, quantification based on this data is difficult.

(2) Sampling and analysis ② Conducting analyses – Analysis of soil –

- The relationship between the concentration of major nuclides and the particle size of soil was examined to study the treatment methods.
- The soil samples collected on the site (Figure 1) were classified by the wet method, and the dry mass was measured (Figure 2).
 - ✓ JIS standard nominal size sieves of 2.8 mm and 90 µm were used. Particles with a particle size of 2.8 mm or more were not included.
- The gross α, ⁹⁰Sr, and ¹³⁷Cs concentration in the classified soil was analyzed. ¹³⁷Cs and ⁹⁰Sr migrate in the same way, regardless of particle size, and are concentrated in soils with small particle size. (Table 1)


(3) Development of sampling technology


Sampling of secondary wastes generated from contaminated water treatment, including sludge (1/2)

FY	Implementation plan	Goal achievement index
(Collection of cesium adsorb	bent, etc)	
2017 • The issues that were are studied to substantiate a	clarified by the conceptual study (such as the adhesion of adsorbent) collection method.	 Show proposed collection method of cesium adsorbent and absorbent sampling methods.
2018 • Based on the result developed to start designing	s of detailed discussions in FY2017, plan of sampling device is g a mock-up device.	 Development of a development plan, and the design of a mock-up.

←Sampling head

- For the collection of cesium adsorbent, an element testing apparatus was manufactured and a confirmation test of the sampling performance of the adsorbent (zeolite) was conducted. (Figure 1)
- □ Since the sampling performance is not stable due to the sampling depth, a structure and shape of the sampling head for collecting samples in a stable manner was determined in which a movable vane protrudes when the rotation direction is switched and gathers the sample inside the sampling head. (Figure 2)
- The sampling head and rod, which are the main elements of the sampling device and a part of the mock-up device, were designed. (Figure 3)

Insufficient

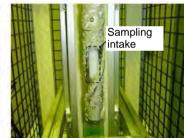


Figure 1. Zeolite sampling performance verification test

Vane protrudes and sample enters inside during sampling

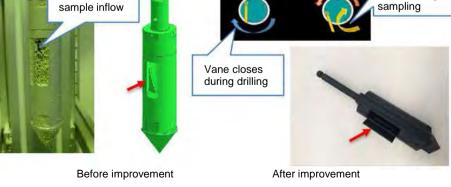


Figure 2. Sampling head before and after improvement

(3) Development of sampling technology

- ① Sampling of secondary wastes generated from contaminated water treatment, including

sludge (2/2)-

- □ The cost and processes required for the development of the sampling device were studied and a development plan was formulated. (Figure 1) (Table 1)
- Application to the SARRY adsorption vessel was studied based on the concept design of the sampling device for collecting samples from the KURION adsorption vessel, implemented during the FY2016 research.
- In order to handle the difference in KURION / SARRY dimensions, both the adsorption vessels can be handled by reviewing the shape of the components, such as the work stand, and by inserting spacers. (Figure 2)
- In order to access the inside of the adsorption vessel and to close the vessel after drilling and sampling, a conceptual design for drilling and closure appropriate to the upper structure of the SARRY adsorption vessel was implemented. (Figure 3)

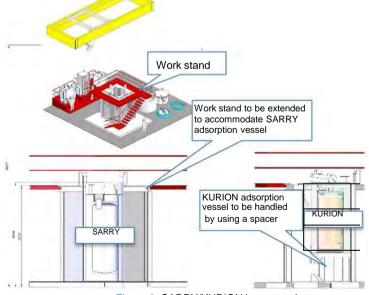
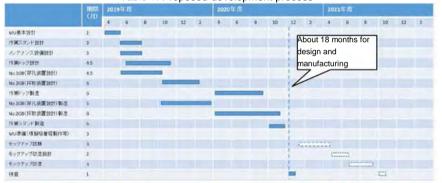



Figure 2 .SARRY/KURION layout study

Figure 1. Flow of development

Table 1. Proposed development process

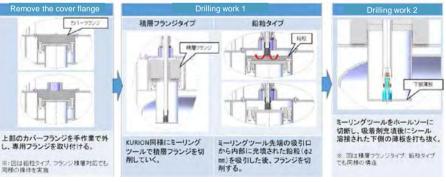


Figure 3. Study of drilling method suitable to the SARRY adsorption vessel

(3) Development of sampling technology - 2 Study of sampling methods in Reactor Facilities building (1/2) -

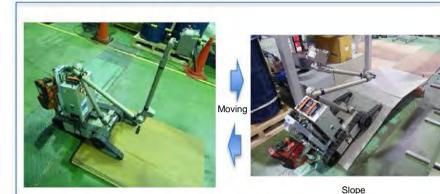
FY Implementation plan	Goal achievement index
2017 • Study on sampling technologies and target sampling locations depending priorities will be conducted. Sampling is performed in sequence according and depending on the state of readiness for the sampling at target location	to the analysis plan according to objectives and priorities. Implementation of sampling in sequence at locations for which a sampling method
2018 • Study on target sampling locations and sampling technology is continuou samples are collected sequentially at target sampling locations based on t	Implementation of sampling in sequence
During research in FY2016, a coring tool was developed for remote sampling. With the aim of confirming the effectiveness of the coring tool, the tool was used in the manual sampling work performed on the 1st to 4th floors of the Unit 4 R/B.	Wedge Normal core collection work
In normal core drilling work, it is necessary to break and collect the co after drilling, but the developed coring tool can drill and collect core at the same time as the core gets meshed with the internal wedges. (Figure 1)	
Samples were collected from the concrete (including painted surfaces on the floor inside the R/B. (Figure 2, Figure 3)	development. The dimensions even have different to a to all the dimensions
Drilling diamotor	Retained

Drilling diameter	φ24mm
Core dimensions	Approx. Φ 17 x 30
Core mass	Approx. 15g
Drilling time	Approx. 4 minutes
Cutting pressing force	20 kg or less
Revolving speed	1050 rpm (without load)

core sample

Figure 3. Sampling work inside Unit 4 R/B

Figure 2. Collected samples


33 ©International Research Institute for Nuclear Decommissioning

(3) Development of sampling technology - 2 Study of sampling methods in Reactor Facilities building (2/2) -

prototype device (single)


attery operation time: about attery operation time: 2

- □ A prototype of the remote sampling device was mounted on Packbot. an environment simulating the R/B was set up, and a verification test of the remote sampling performance was conducted.
- The test confirmed that there was interference when riding over bumps and that there was a problem with the running balance, so the equipment was modified. (Figure 1) The verification test for remote sampling performance was conducted once again.
- It was confirmed that a series of remote sampling operations, including traveling to the sampling position, core sampling, and returning, could be performed. (Figure 2)
- □ Although there is a restriction on the possible sampling locations due to the circumstances inside the R/B, a technology has been established to enable remote collection of core samples from the floor surface.

Bump

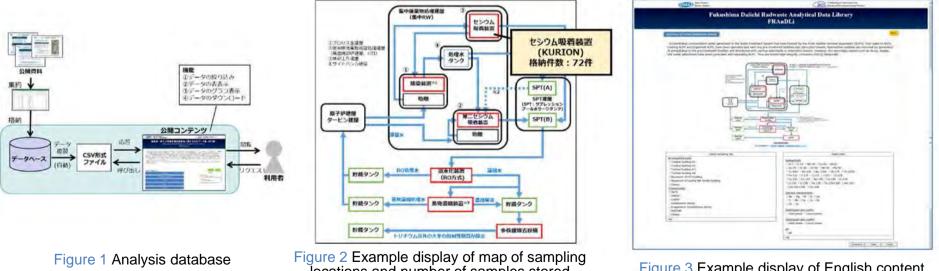
Drilling, core sampling

Travelling distance	80m
Number of passes with 25° slopes:	2
Number of passes with 70 mm bumps	2
Required time	40 minutes
Sample collected	Φ17 x 30 mm core x 1 sample

Figure 2 Verification test of remote sampling performance

	Specifications of remote sampling prototype device (sin		
	External dimensions	528 x 300 x 638mm	
- 15.00	Mass	22kg	
	Drilling revolutions	1050 rpm (without load)	
	Dust collector flow rate	250 L/min (catalog value)	
	Output of parts	Air cylinder, tank capacity 0.75L Driving battery operation time: a 30 minutes Control battery operation time: 2 hours	
	Communication specifications	Communication distance: 60m (indoor) Radio format: 2.4GHz spread spectrum	

Figure 1 Remote sampling device - Prototype (Single)



(4) Analysis data management – Analysis results database (1/2) –

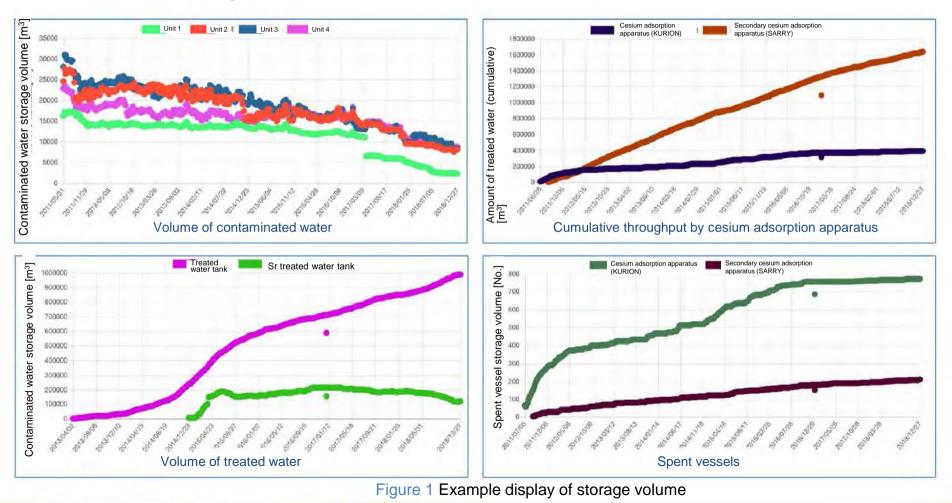
FY	Implementation plan	Goal achievement index
2017	 A database through which all stakeholders involved in analysis can share data is established and used to streamline analysis work. A database for the public is created to effectively utilize the accumulated analysis data for decommissioning. 	 Creation and utilization of the analysis database.
2018	Issues in operation are identified to improve and upgrade functions.	Improvement of the database to solve issues identified during use.

□ The analysis database "FRAnDLi"* has been created and released on the Internet in March 2018 (Figure 1). and the information is being gradually upgraded and improved.

□ The sampling location and the number of samples stored were displayed (Figure 2), and the English version of the content was created (Figure 3).

configuration

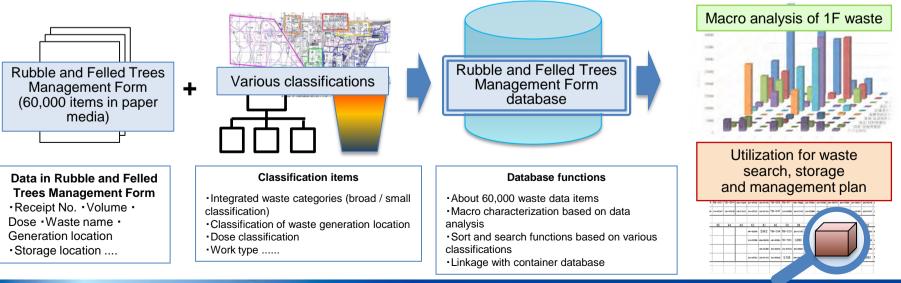
locations and number of samples stored


Figure 3 Example display of English content

* Analysis data related to waste generated from the accident at the Fukushima Daiichi Nuclear Power Station. https:/frandli-db.jaea.go.jp/FRAnDLi/

(4) Analysis data management

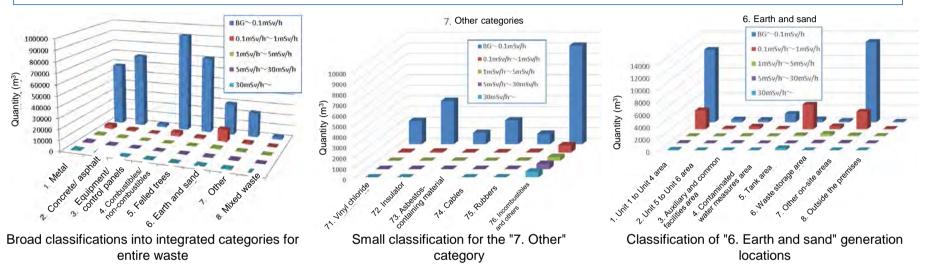
- Analysis results database (2/2) –
- Public data on volume of stored contaminated water, treated water, and secondary wastes generated from contaminated water treatment, etc. was added and browsing was enabled (Figure 1).



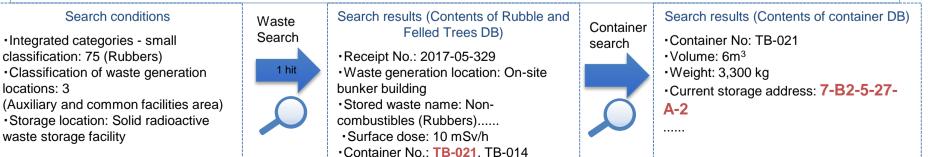
(4) Analysis data managementWaste information database (1/2) –

FY	Implementation plan	Goal achievement index
2017 2018		 Update of the waste list with the latest waste data and analysis results.

- The "Rubble and Felled Trees Management Table", which was conventionally managed on paper media, has been converted to an electronic database. It will be used for the following studies:
 - Macro analysis of features such as amount of storage (volume) and dose rate
 - Identification of materials with impact on disposal
 - Utilization for waste storage, management, and sampling plan
- Entries have been made for waste data in "Rubble and Felled Trees Management Form" (Apr 2012 to Dec 2018) containing about 60,000 items. Each of about 60,000 waste data items have been newly classified as per integrated waste categories (broad classification into 8 types, small classification into 23 types), classification of waste generation locations (8 types), dose classification (5 types), and work type classification (10 types), enabling detailed data analysis of the waste.
- In addition, by linking the container number to the data on waste collected in containers and stored in the solid radioactive waste storage facility and combining it with a separately created container database, it is possible to identify the waste storage location.



(4) Analysis data managementWaste information database (2/2) –

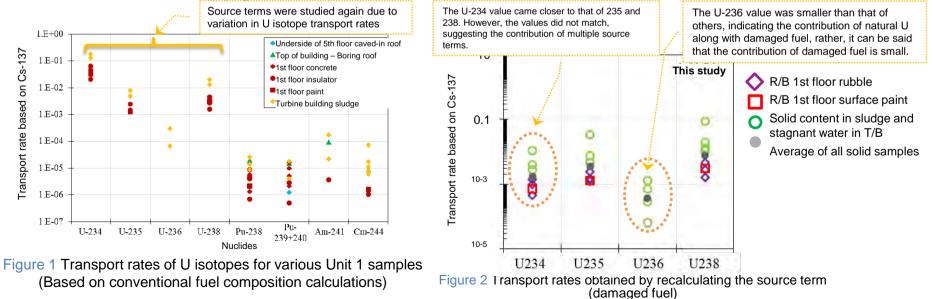

Reference cases for macro analysis of 1F waste

 Detailed data analysis of waste using the small classification category and classification of waste generation locations is possible.

Utilization for waste search, storage and management plan

 Search for waste using classification items and identification of storage location due to linkage with container database is possible.

IRID


39

(5) Establishment of characterization method ① Study on the migration behavior and the contamination mechanism of radionuclides -

FY	Implementation plan	Goal achievement index
2017	• The contamination mechanism of radionuclides is estimated in reference to information about the positions (locations) and processes where and how waste was contaminated and information about the development of the situation after the occurrence of the accident, as well as knowledge about waste classification (composition of radionuclides that characterize the waste).	 Presentation of the estimated contamination mechanism based on analysis data.
2018	The results of classification are reviewed as analysis data is accumulated.	Same as above

As a contamination mechanism, it is important to superimpose contamination from multiple source terms as well, together with pathways (air, water). Since the uranium isotopes are believed to be found even in nature along with those found in damaged fuel, the migration behavior of uranium was studied using the transport rate.

Conventionally, the transport rate of uranium varied from one isotope to another (Figure 1), so the fuel composition used for calculating the transport rate was studied. The transport rate of uranium isotopes correlated in U-234, 235, and 238, while a difference was visible in U-236 (in the example of Unit 1 rubble, the contribution of natural uranium was large) (Figure 2). This method using the transport rate as an index is considered to be useful in studying the source terms of uranium.

(5) Establishment of characterization method ② Study of waste classification based on analysis data -

FY	Implementation plan	Goal achievement index
2017	 Radionuclide compositions that determine the characteristics of waste are identified. Data analysis proceeds using the quantity (transport rate) standardized based on the correlation between concentrations of radionuclides, and the nuclide composition of the source terms. 	 Proposal of waste classification based on analyzed data.
2018	 The results of classification are reviewed as analysis data is accumulated. 	Same as above

Since the transport rate calculated from the analysis data takes a curve similar to log-normal distribution, work to determine the classification of waste using probability paper plot points was considered (Figure 1).

This policy seemed to be promising, and a method using Bayesian statistics was studied as shown below.

There were no findings that would require the classification studied in the previous fiscal year to be changed.

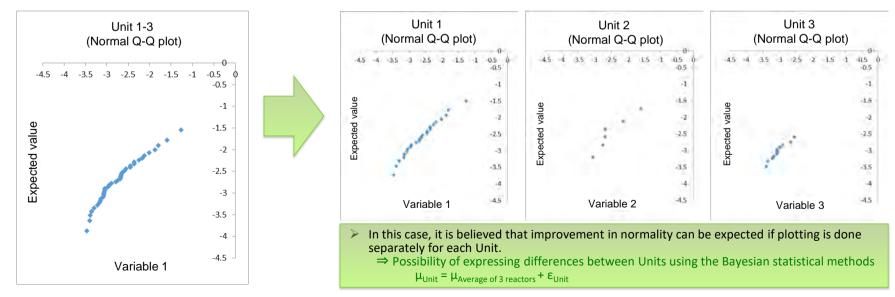


Figure 1 Image of the work of studying the dependence of Units (Using the transport rate distribution of alkali earth metal as an example)

(5) Establishment of characterization method 3 Study on the representativeness of analysis data (1/4) -

FY	Implementation plan	Goal achievement index
2017 2018	 Study of assessment methods for the representativeness of analysis data is conducted under the restriction condition that the amount of data and/or sampling locations are limited. Also, methods for estimating the distribution of waste contamination are studied based on the assessment method established by the aforementioned study. 	 Proposal of the assessment method for the representativeness of analysis data and the method for estimating contamination distribution.

- Application of the conventional method^{*1} of determining the activity concentration of waste seems to be difficult.
- It is, therefore, necessary to develop and establish new methods. Since the information and analysis data on waste gradually increases over a long period of time, a method that can estimate the change in statistical properties due to the increase in data, will be introduced.
- For this purpose, the use of Bayesian statistics is being studied instead of the conventional frequency distribution method (Figure 1).

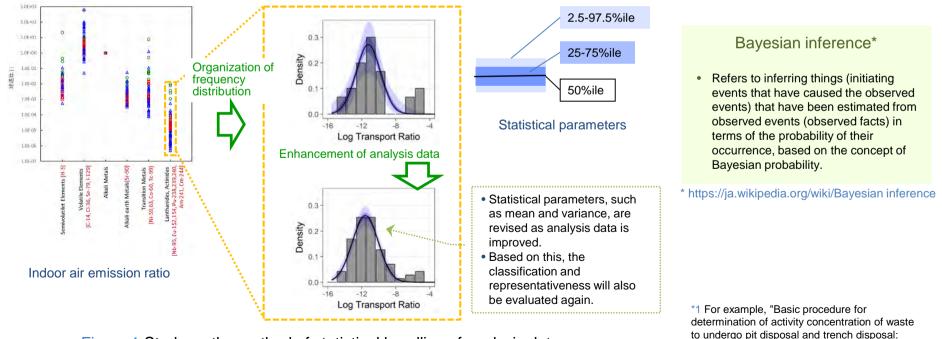


Figure 1 Study on the method of statistical handling of analysis data

2011 (AESJ-SC-F022:2011)"

(5) Establishment of characterization method 3 Study on the representativeness of analysis data (2/4) -

- To improve the accuracy of data, the frequency distribution of the radionuclide transport rate was determined, and the change in the parameters (mean and variance assuming a log-normal distribution) with the increase in data was investigated. (Table 1)
- The parameters generally improved with the accumulation of data, confirming that the conventional classification was valid from the viewpoint of nuclide composition. The variance of alkali earth metal elements, mainly composed of Sr, has not improved due to the change in the mean, and thus needs to be studied.

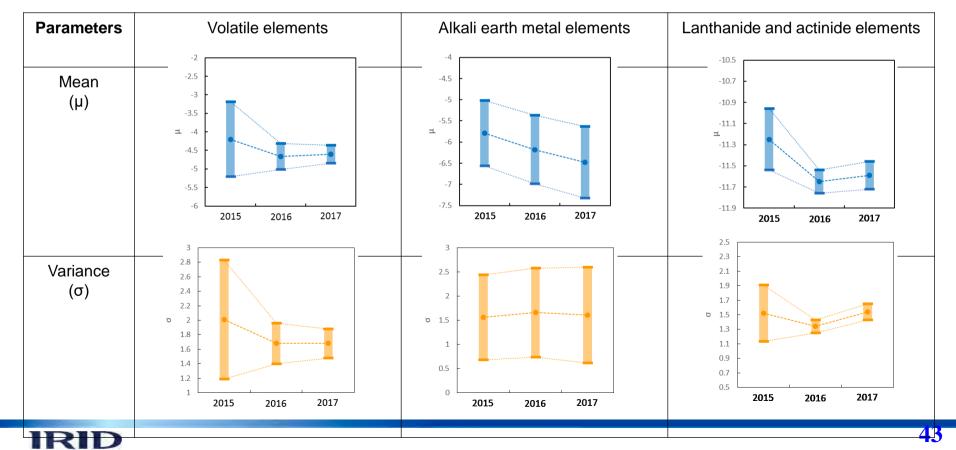


Table 1 Changes in parameters related to frequency distribution (log-normal distribution) of transport rate in R/B with the increase in data

(5) Establishment of characterization method 3 Study on the representativeness of analysis data (3/4) -

Inventory is calculated using a contamination model based on waste information, analysis data, and progression of events after the accident. Here, the representativeness of the analysis data is studied by evaluating the probability density based on Bayesian statistics. The contamination model will applied based on the figure on the next slide as before.

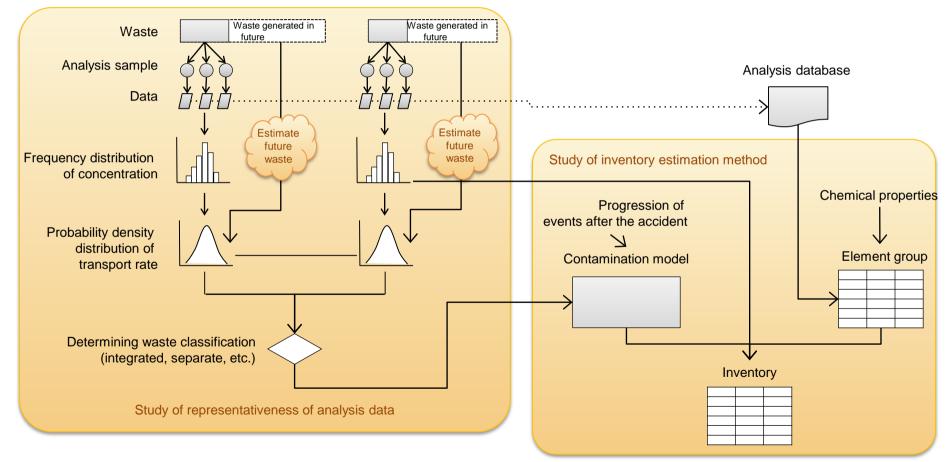


Figure 1 Conceptual flow of estimating waste inventory based on analysis data

(5) Establishment of characterization method

- ③ Study on the representativeness of analysis data (4/4) -

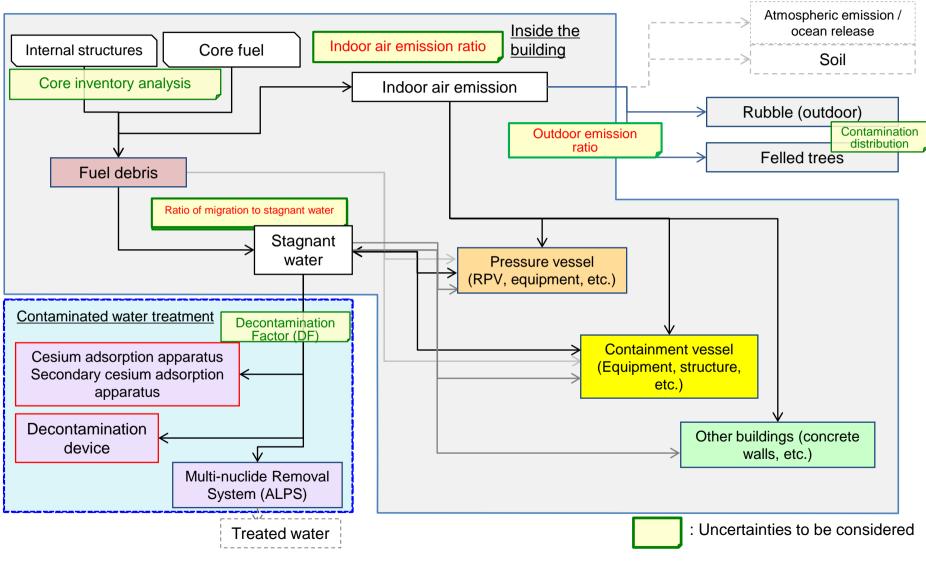


Figure 1 Contamination model to estimate waste inventory (Flow of material)

(5) Establishment of characterization method ④ Accuracy improvement of analytical evaluation methods -

FY	Implementation plan	Goal achievement index
2017 2018	 Methods necessary to improve the accuracy of inventory evaluation are studied based on the results of the studies on classification of waste (composition of radionuclides that characterizes waste), contamination mechanism of radionuclides, and representativeness of analysis data. 	 Indicate the measures for improving analytical evaluation accuracy.
2017	 An environment for the analytical evaluation is established which incorporates methods required for the improvement of inventory evaluation accuracy (including calculation tools). 	 Preparation of analytical evaluation tools.

- Using the classification of radionuclides specified on the basis of the analysis data and the parameters of log-normal distribution obtained based on Bayesian statistics, a method for obtaining the nuclide migration ratio was studied with the help of Monte Carlo calculation.
- The nuclide migration ratio could be expressed in terms of probability density distribution. By using this method, it is possible to obtain the activity inventory of various wastes and evaluate their certainty.

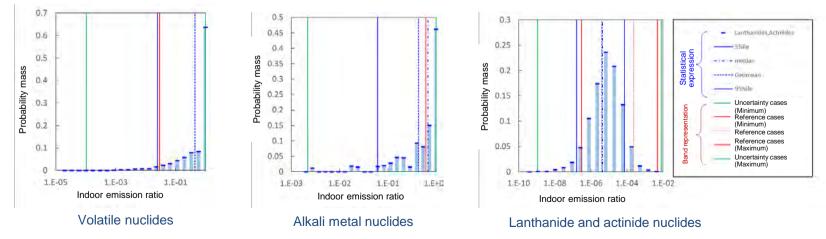


Figure 1. Nuclide migration ratio obtained with the help of Monte Carlo calculations based on Bayesian statistics (expressed in terms of probability density distribution)

-

(5) Establishment of characterization method – ⑤ Summary of comprehensive inventory evaluation –

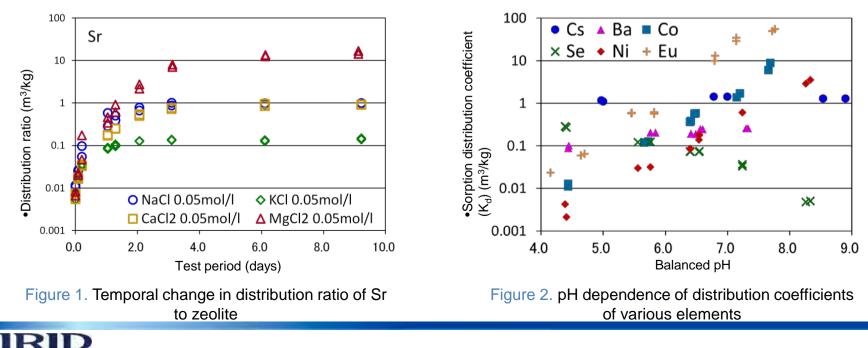
FY	Implementation plan	Goal achievement index
2018	• The waste inventory used in the study of waste management is evaluated and set up using the environment and data prepared in the previous section. At the same time, the uncertainties in the obtained results are studied in consideration of the uncertainties in the analysis data and the analysis method.	 Presentation of estimated waste inventory.
2018	 The environment (including calculation tools) is improved and a manual created so that the evaluation method developed in the previous section can be easily re-evaluated. 	 Presentation of procedures for inventory estimation.

 Activity inventory of various wastes was estimated using a model incorporating Bayesian statistics and calculation tools were developed. (Figure 1, Figure 2).



Figure 1. Statistically obtained inventory (Example of low dose rubble)

Figure 2. Calculation tool developed on the basis of spreadsheet software



47

(5) Establishment of characterization method – ⑥ Study of data collection methods to improve accuracy –

FY	Implementation plan	Goal achievement index
2017 2018	 Necessary data is collected based on the knowledge accumulated through studies. 	 Collection of data that contributes to accuracy improvement.

- The sampling of zeolite, which is one of the secondary wastes generated from contaminated water treatment, is difficult due to high radiation. In order to improve the accuracy of indirect inventory estimation, distribution behavior of difficult-to-measure nuclides was investigated.
- Distribution data was obtained for the condition of the presence of competing cations (Figure 1) and the dependence on pH (Figure 2).
- In addition, data on Th with stable tetravalence like Pu was collected, and the competition between Eu and Cs with stable trivalence like Am and Cm was studied.

Re-selection of nuclides for analysis

[Reference: FY2017 results]

□ □ The analysis of difficult-to-measure nuclides needs to be streamlined because it requires more resources (manpower, facilities, and time) than that for measuring typical nuclides. The list of nuclides to be analyzed was reviewed based on the accumulated analysis data to date and contamination behaviors (element groups) that were inferred from the analysis data.

□ The concentration of some nuclides that weren't detected in the past (Table 1) can be estimated by the fuel consumption based-calculation, from the viewpoints of isotope and chemical similarity, not relying on analysis. In addition, the necessity of analysis and calculation was examined by taking into account the importance in disposal safety (Figure 1).

 \Box Twenty-three (23) nuclides were listed as those whose concentration would be estimated by calculation, while the number of nuclides to be analyzed was reduced from 38 to 30 (Table 2).

Eleme	nt Detected	Not detected
н	3H	
С	14C	
CI		36CI
Ca		41Ca
Ni	63Ni	59Ni
Тс	99Tc	
Cs	137Cs	135Cs
Eu	154Eu	152Eu
U	234,235,236,238U	
Np		237Np
Pu	238,239+240 Pu	241,242Pu
Am	241Am	242m,243Am
Cm	24Cm	245,246Cm

Table 1. List of updatastad publides

iclides	Target nuclides for radiation protection	Refer to ICRP Pub.107
etected	1252 nuclio	des
	Exclusion by half-life	• <i>T</i> _{1/2} ≥1.5 y
	134 nuclio	des
	Importance in disposal safety (1)	• Nuclides listed as important in the past evaluation of disposal safety in Japan
	51 nucli	des
	Importance in disposal safety (2)	• Reflection of the results of investigations conducted until last fiscal year on waste generated by the accident
	30 nuclides	 Necessity of analysis while considering contamination mechanisms, etc.
m	Reflection of analysis results and streamlining	Detection record Possibility of detection in the future Rationality of calculation-based
	✓ 30 nuclides Potential nuclides for analysis in future	
Figure 1. Pr	ocedure to select nuclides to be importance of safety in o	, ,

Table 2. Target nuclides for analysis and calculation

Nuclides to be analyzed Nuclide subject H 3 C 14 Cl 36 Ca 41 Co 60 Ni 63 59 Se 79 Sr 90 Zr 93 Mo 93 Tc 99 Ru 106 Pd 107 Ag 108m Sn 126	ect to
H 3 C 14 Cl 36 Ca 41 Co 60 Ni 63 59 Se 79 Sr 90 Zr 93 Mo 93 Tc 99 Ru 106 Pd 107 Ag 108m	
Cl 36 Ca 41 Co 60 Ni 63 59 Se 79 Sr 90 Zr 93 Nb 94 93m Mo 93 Tc 99 Ru 106 Pd 107 Ag 108m	
Ca 41 Co 60 Ni 63 59 Se 79	
Co 60 Ni 63 59 Se 79	
Ni 63 59 Se 79	
Se 79 Sr 90 Zr 93 Nb 94 93m Mo 93	
Sr 90 Zr 93 Nb 94 93m Mo 93	
Zr 93 Nb 94 93m Mo 93	
Nb 94 93m Mo 93	
Mo 93 Tc 99 Ru 106 Pd 107 Ag 108m	
Tc 99 Ru 106 Pd 107 Ag 108m	
Ru 106 Pd 107 Ag 108m	
Pd 107 Ag 108m	
Ag 108m	
Sn 126	
Sb 125	
129	
Cs 137 135	
Sm 151	
Eu 154 152	
Pb 210	
Po 210	
Ra 226, 228	
Ac 227	
Th 228, 229, 230	0, 232
Pa 231, 233	
U 234, 235, 236, 238 233	
Np 237	
Pu 238, 239, 240 241, 242	
Am 241 242m, 243	
Cm 244 245, 246	
mber of nuclides 30 23	

©International Research Institute for Nuclear Decommissioning 48

(6) Simplification and Speeding-up of Analysis Methods

- O Study of more efficient and reasonable analysis methods -

FY	Implementation plan	Goal achievement index
2017	 Analysis methods that can be improved the efficiency and accelerated, are identified based on the analysis plan. 	 Listing analysis methods to be streamlined and improved in efficiency
2018	 Applications of technologies expected to contribute to streamlining and improvement in efficiency, are studied. 	 Presentation of the application scope of the listed analysis methods

During the analysis of adsorbents, although the analysis sample was melted for pre-treatment (Figure 1), generation of residue was a problem (Figure 2). Since volatile ¹²⁹I, ¹⁰⁶Ru, etc. volatilize and are lost during the process of melting, it is necessary to determine the percentage of loss and make corrections accordingly by adding a standard material for quantification, but the process is complex as the conditions of melting vary according to the adsorbent, and need to be established depending on the type of nuclide.

Quantification was carried out after confirming that the residue did not contain significant amounts of radionuclides, and when the concentration of ¹³⁷Cs was low, quantification using a solid standard radioactive source was introduced (Figure3). At the time of application, adjustments will be made beforehand so that the volume is equivalent to the standard radioactive source.

Figure 1. Procedure of destructive analysis method for adsorbents



Figure 2. Non-dissolved residues of cerium oxide adsorbent

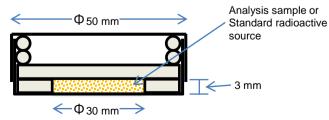


Figure3. Container for non-destructive measurement of solid samples (proposed)

(6) Simplification and Speeding-up of Analysis Methods ② Study of simple and quick analytical methods

The simplification and speeding-up of the current analysis methods was studied with an aim to establish analysis methods that will be used regularly during the analysis of waste generated from the accident (Figure 1).

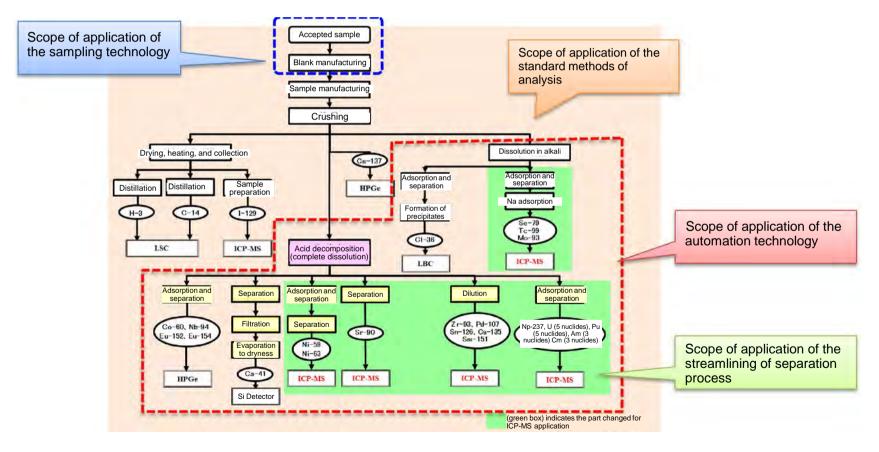


Figure 1. Subjects of analysis and analysis methods that are to be improved

(6) Simplification and Speeding-up of Analysis Methods ^② Study of simple and quick analytical methods

- Development of sampling technology -

FY	Implementation Plan	Goal achievement index
2018	 A sampling method is developed to ensure minimum sample quantities while ensuring the representativeness of the analytical values with respect to the samples, by evaluating the "distribution of the sample surface material" by means of non-destructive analysis. A study on the prototype of sampling device is conducted. 	 Presentation of a proposal for reasonable methods for sampling of analysis samples

Analysis samples generally have non-uniform contamination, and hence it is necessary to carry out sampling at locations appropriate to the analysis and to carry out data evaluation beforehand. Accordingly, the contamination on the sample surfaces was examined, the methods to identify the sites to be sampled were studied, and the sampling device to be used for collecting samples from the target site was studied as well.

In order to map the contamination status of the samples, a prototype of the device that can measure the distribution of the y-ray releasing nuclides on the sample surface, was developed and samples with an embedded 137Cs radioactive source were measured (Figure 1). As a result, it was confirmed that it was possible to measure the differences in the activity concentrations of the sample surfaces as coefficient values, and the viability of the basic device was verified (Table 1). In order to be able to identify the differences between the high concentration parts and the low concentration parts more clearly, in the future, device improvements that would reduce the impact (background) other than on the measured parts, will need to be studied, along with optimizing the design in terms of the positional relationship between the sample and the detector or the size of the collimator, etc.

Prototyping the sampling device, cutting up any place with an electric drill, and sucking and trapping the sample powder in a filter, helped to gain the insight that it was possible to easily obtain the sample in powder form instead of cutting out the required portion (Figure 2). The applicability to quantitative sampling and remote operations will need to be studied in the future.

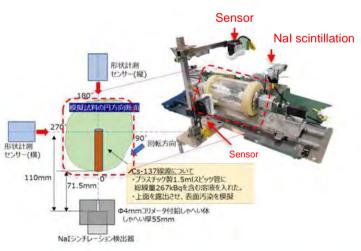


Figure 1. Prototype of mapping device and measurement method of distribution of contamination concentration

Table 1 Results of the measurements of contamination concentrations on the sample surfaces

回転角度	1	1	方向距離(n	nm)	
(Deg)	-20	-10	0	10	20
60	$\beta = 1$	25	109	26	1
50		33	127	Exposed parts or radioactive sour	
40		77	165		
30	19	65	284		
20	92	48	435	85	43
10	90	81	759	1	57
0	71	96	1.067	127	36
-10	75	69	612	121	76
-20	43	50	208	99	58
-30	22	73	136	48	49
-40		56	79	55	
-50		19	55	49	
-60		49	61	31	
	-20	-10	0	10	20

·Numerical values are coefficients (Measuring time 300 seconds)

Diaphragm vacuum pump

Electric drill

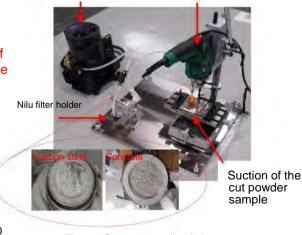
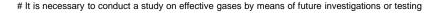
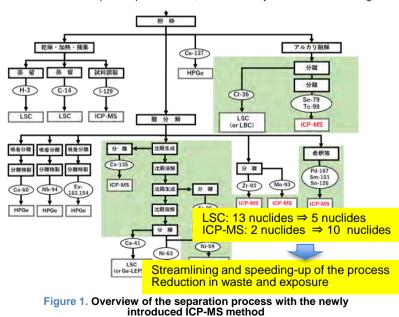


Figure 2. Prototype sampling device

(6) Simplification and Speeding-up of Analysis Methods ② Study of simple and quick analytical methods


- Study on streamlining the separation process -


FY	Implementation Plan	Goal achievement index
2018	 The effective separation technologies are studied reflecting the latest findings assuming γ-ray spectrometry or ICP-MS, while examining the current separation technologies. Measuring devices that do not use radioactive reference materials and their calibration methods are studied. 	 Presentation of a list of existing analysis technologies Presentation of a proposal for streamlined separation technologies Presentation of a proposal for calibration methods of devices

- Triple Quadrupole ICP-MS (ICP-MS/MS) are able to reduce the impact of nuclides (isobars) with the same mass numbers due to their reaction with gas and are believed to be useful from the point of view of streamlining. Therefore, the latest findings (such as the information related to the lower limits of detection, effective solid-phase extracting agent, and effective reaction gas etc. (Table)) related to analysis using the ICP-MS method, were consolidated. As a result, a separation process with a simplified pre-treatment process could be proposed (Figure).
- It is believed that by means of the ICP-MS method, it is possible to conduct a mass analysis of ⁵⁹Ni, ⁷⁹Se, ⁹³Zr, ⁹³Mo, ¹²⁶Sn, ¹³⁵Cs, standard samples of which are difficult to obtain. Therefore, it is believed that quantification is possible without using a radioactive reference material by correcting the mass discrimination effects arising from the differences in the mass numbers, as against the analytical values obtained from the analytical curve using a readily available and stable standard isotope sample. In future, it is necessary to demonstrate using samples (simulated samples) that simulate the properties actually being handled.

Table 1. Reaction gases effective in the removal of the impact of isobars during the ICP-MS measurements

Selected nuclides	Isobars	Effective reaction gases	Reactions with the reaction gases
⁵⁹ Ni	⁵⁹ Co	N ₂ O	Removal by reaction of the isobars
⁷⁹ Se	⁷⁹ Br	O ₂	Removal by reaction of the isobars
⁹³ Zr	⁹³ Nb, ⁹³ Mo	NH ₃	$Zr^+ + 6NH_3 \rightarrow Zr(NH_3)_6^+$
⁹³ Mo	⁹³ Zr, ⁹³ Nb	NH ₃	Removal by reaction of the isobars
⁹⁹ Tc	99Ru	(#)
¹⁰⁷ Pd	¹⁰⁷ Ag	NH ₃	$Pd^{++3NH_{3}} \to Zr(NH_{3)_{3}^{+}}$
¹²⁶ Sn	¹²⁶ Te, ¹²⁶ Xe	(#	;)
129	¹²⁹ Xe	0 ₂	Removal by reaction of the isobars
¹³⁵ Cs	¹³⁵ Ba	N ₂ O	Removal by reaction of the isobars
¹⁵¹ Sm	¹⁵¹ Eu	$\rm NH_{3,}O_2$	$\begin{array}{l} \mbox{Sm}^{+} + \mbox{NH}_{3} \rightarrow \mbox{Sm}(\mbox{NH}_{2})^{+} + \mbox{H} \\ \mbox{Sm}^{+} + \mbox{O}_{2} \rightarrow \mbox{SmO}^{+} + \mbox{O} \end{array}$

ICP-MS: Inductively Coupled Plasma Mass Spectroscopy, LSC: Liquid Scintillation Counter

53

(6) Simplification and Speeding-up of Analysis Methods

^② Study of simple and quick analytical methods

- Development of automation technologies -

FY	Implementation Plan	Goal achievement index
2018	 The existing separation technologies are improved to use automatic solid-phase extraction equipment. The feasibility of the Ni nuclide separation operation, which is the most complex of the separation operations, is evaluated. 	Presentation of the feasibility assessment results of a series of separation operations concerning Ni nuclides

□ In recent years, the solid-phase extraction method, which has a high separation capability in chemical separation operations, is being used widely as it can be applied to various types of separations by changing the extracting agent or the eluant. However, the separation takes a lot of time and the analyst has to be retained for a long time. Meanwhile, as compared to the conventional solvent extraction method, this method is believed to be comparatively easier to automate as the system uses cartridges. Therefore, automation systems for analytical operations were studied focusing on the automatic solid-phase extraction equipment.

A device with the additions shown in Figure 1 was manufactured assuming the use of various aqueous or solid-phase extraction columns.

□ The performance of the prototyped automation system was compared with operations by experts. Assuming the separation of ⁶³Ni, when a series of analytical operations shown in Figure 1 for Ni were carried out, and the recovery rates were compared, it was found that the recovery rate and accuracy were equal, thereby demonstrating the usefulness of the improved device (Table 1). Since the reagent is passed using gravity, in order to further improve accuracy and speed, it is desirable to control the speed of passing liquid.

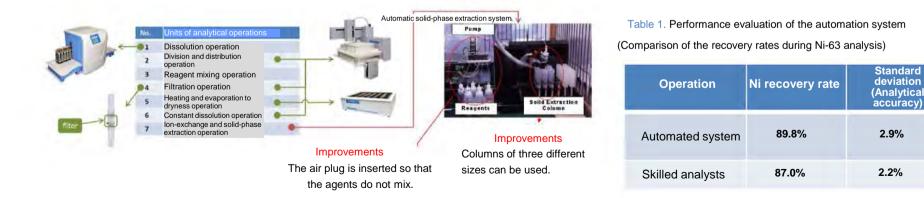
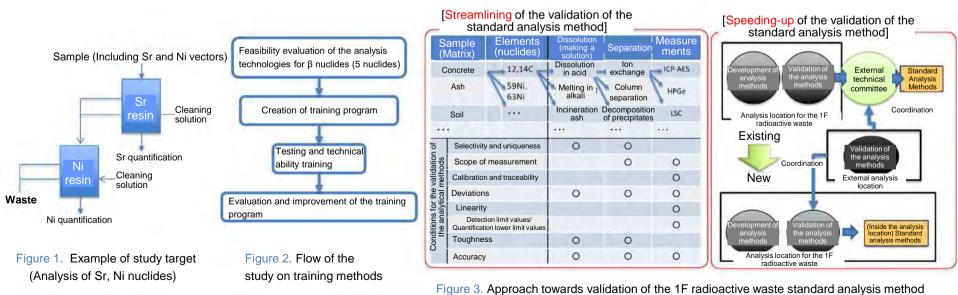


Figure 1. Composition of automation technology and improved solid-phase extraction equipment

(6) Simplification and Speeding-up of Analysis Methods

^② Study of simple and quick analytical methods


- Establishment of standard analysis methods -

FY	Implementation Plan	Goal achievement index
2018	 The feasibility of analysis technologies is evaluated based on the study on streamlining the analysis process for five β nuclides (36Cl,41Ca,59Ni,63Ni,and 90Sr). The technologies for ensuring the reliability of the analytical values are studied and consolidated. The training methods aimed at managing the accuracy of analysis and maintaining the skill levels of the analysts are studied in order to ensure the reliability of the analytical values 	 Presentation of the feasibility evaluation results concerning the element separation of the nuclides to be measured Creation of a draft guideline for site authentication levels to ensure the reliability of the analytical values Presentation of a proposal for the methods of training & education

•In order to evaluate the feasibility of the proposed separation process, the separation and purification tests of the elements of target nuclides were performed, and the prospect of application to waste analysis was obtained. In addition, generally, in case of β nuclides, complex chemical separation operations are necessary prior to measurement, hence the technologies for training engineers, who will start analysis afresh, were studied from that perspective (Figure 1).

• The training program for the engineers has been improved as much as possible with respect to clarification of matters that cannot be judged simply on the basis of the understanding of the analysis principles (criteria for the success or failure of sample decomposition, etc.) (Figure 2).

•A draft version of the Quality Assurance Guidelines reflecting a system conforming with the ISO9001 Standards and taking into account the rapid validation of the standard analysis method for a wide variety of analysis samples that are characteristic of 1F radioactive waste, was created (Figure3).

IRID

Summary of Results and Future Issues

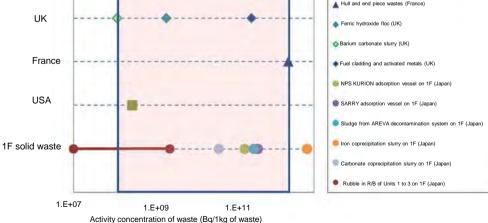
	Summary of Results	Future Issues
(1) Study of analysis plan	 The annual analysis plan was drafted, and transportation and analysis was implemented. Matters to be addressed in the mid-and-long term were studied in preparation for the next fiscal year. 	Revision of the mid-and-long-term analysis plan.
(2) Sampling and analysis	 The samples from contaminated water and secondary wastes generated from contaminated water treatment, were collected. The samples were transported from 1F to the analysis facilities three times. Rubble, contaminated water, secondary wastes generated from contaminated water treatment, and soil were analyzed, the data was accumulated, and offered for the study of treatment and disposal. 	 Continuation of sampling of secondary wastes generated from contaminated water treatment. Securing the analysis samples in view of completion of the Okuma Analysis and Research Center.
(3) Development of sampling technology	 The method of collecting sludge from decontamination systems was studied and executed. The element device for zeolite sampling was manufactured and tested. The element device for sampling inside the R/B was tested at the actual site. 	 Gaining an insight into the zeolite sampling technology.
(4) Analysis data management	 An analysis results database was created and made public. The waste information being managed by TEPCO was computerized. 	Steady expansion of the database.Utilization of the waste information.
(5) Establishment of characterization method	 Based on the analysis data, information on the contamination inside R/B, uranium and neptunium contamination, etc. was gathered. Based on the analysis data, contamination classification and waste classification was specified for the elements. Bayesian inference was confirmed to be useful as the method for evaluating the representativeness of analysis data and the certainty of inventory estimation. Analytical evaluation technologies of the inventory were improved and tools were developed. 	 Steady creation of a model for contamination mechanism. An analysis planning method that introduces Bayesian statistics has not been established, and this needs to be studied while planning mid-and-long-term analysis. Proceeding with the study of contamination behavior in accordance with the accumulation of analysis data, and incorporation of the results of progression of the accident.
(6) Simplification and speeding-up of analysis methods	 The sampling technologies of the analysis samples, analysis by the application of ICP-MS, and automation of the chemical separation operations were studied, and each was confirmed to have good prospects. 	 Standardization of the analysis methods in view of the completion of the Okuma Analysis and Research Center.

56

3. Research on Storage and Management

Contents of Report

 Measures for hydrogen gas generation
 Measures for wastes generated by fuel debris retrieval
 Development of contamination evaluation technology for solid waste segregation



- Implementation plan and goal achievement index -

 Expertise on the method for assessing hydrogen gas generated during the storage radiation solid waste containing water, and storage container requirements such as v etc. pertaining to the hydrogen gas generated, from Japan and overseas (the UK, the France) are surveyed. Based on the results of research on hydrogen gas generation conducted in FY201 which were collected from overseas and Japan, the applicability to 1F is studied to clapotential issues. 	hydrogen gas generation assessment metho and requirements for the storage container s as vents
which were collected from overseas and Japan, the applicability to 1F is studied to cla	clarify
n FY2017, the survey on concepts of generated hydrogen gas, hydrogen gas generation assessment methods, container specifications, and measures for hydrogen gas generation vas conducted, focusing on differences with Japan and including reasons for the lifferences. [Survey items in FY2017]	The solid waste with activity concentration closest to that of solid waste at 1F and which is expected to necessitate hydrogas management, was selected from each country.
1. Survey on concepts of hydrogen gas generation in each country (regulations and technical requirements)	TRU waste (USA)
□ Concepts of hydrogen gas generation in each country (regulations and technical requirements) were surveyed with respect to storage, treatment, disposal and transport phases. France	Ferric hydroxide floc (UK) Barium carbonate slurry (UK) Fuel cladding and activated metals (UK)
2. Survey of evaluation methods for hydrogen gas generation	NPS KURION adsorption vessel on 1F (Japan)

- □ G -value settings and concepts were mainly investigated.
 3. Investigation of required functions for a solid waste container
 - □ Types and materials of containers were broadly investigated focusing on measures for hydrogen gas generation.
- 4. Measures for hydrogen gas generation

 $\hfill\square$ Measures for reducing hydrogen gas generation were investigated.

Activity concentration of 1F waste: From the FY2015 findings of "R&D Project on Solid Waste Treatment and Disposal"

- Survey on concepts of hydrogen gas generation in each country (regulations and technical requirements) -

Although there are no specific legal restrictions in foreign countries, the requirements for storage, transportation, and disposal can be met by following the manuals, guidance or the radioactive waste specifications at the disposal sites.

Note that transportation in all countries is regulated by the 'Regulations for the Safe Transport of Radioactive Material (SS R -6)' formulated by IAEA.

	USA	UK	France
Storage	Vent mechanism is required for all TRU waste as per the DOE*1 enacted "Radioactive Waste Handling Manual".	laws for hydrogen gas. However, it is possible to deal with the requirements concerning transportation to the disposal sites and disposal by following the radioactive waste specifications or guidance formulated by RWM Ltd.*6. This is	There are no specific regulations in the French laws for hydrogen gas. However, the French nuclear facilities safety bureau (DSIN) has taken the decision to approve the specifications package presented by CIGEO (deep geological repository)*8. These specifications lay down the requirements which need to be fulfilled for acceptance at the CIGEO disposal site.
Treatment	None in particular (Handled by ventilation and air conditioning in the treatment system)		
Disposal	None in particular (Ventilation prior to closure by means of the ventilation system and no ventilation after closure)		
Transportation	DOT*2 has stipulated regulations similar to the IAEA formulated 'Regulations for the Safe Transport of Radioactive Material (SS R -6)'. (LSA*3, SCO*4, Type*5A, Type B, Type C etc.) In addition, NRC has made regulations for the Type B transportation containers.	Moreover, The Office for Nuclear Regulation (ONR) exercises control on the basis of the regulations laid down by IAEA.	The L'Autorite de Surete Nucleaire (ASN) exercises control on the basis of the regulations laid down by IAEA.

*1: USA Department of Energy

*2: USA Department of Transportation

*3: Low Specific Activity (indicates low concentrations or that nuclear fuel material is not included) A detailed definition is available in 49CFR173.403.

*4: Surface Contaminated Objects (Objects with contaminated surfaces)

*5: Note the objects are other than those belonging to the radioactive waste classification (Class A, B, C).

*6: Radioactive Waste Management Ltd. (not a regulatory authority but a company that manages geological disposal facilities (GDF disposal sites))

*7: Letter of Compliance (Disposal evaluation process formulated by RWM Ltd.)

*8: Reported in the Code of Environment L542 -12.

- Evaluation methods for hydrogen gas generation - Evaluation parameters -

The evaluation formula for hydrogen gas generation is common to the three countries. In addition, it was confirmed that the hydrogen gas generation speed is assessed using the inventory and G-values.

		USA	UK	France	
	Evaluation Formula	Speed of hydrogen gas generation = Σi.j Decay heat of nuclide i x G-value of type of radioactive ray j x Absorption efficiency of type of radioactive ray j Decay heat of nuclide i = Σj Inventory of type of radioactive ray i x Release rate of type of radioactive ray j x Released energy of type of radioactive ray j (Red text: Variable values, Black text: Fixed values)			
	Inventory of type of radioactive ray i	 Verification by document inspection E.g. AK (Acceptable Knowledge) Sampling measurement depending on the situation Assessment by maximum concentration in case of non-uniform waste 	 Managed through database UKRWI*1 Sampling measurement depending on the situation Assessment by maximum concentration in case of non-uniform waste 	 Document inspection Sampling measurement depending on the situation Assessment by maximum concentration in case of non-uniform waste 	
Para	Release rate of type of radioactive ray j	Depends on the contained nuclide	Depends on the contained nuclide	Depends on the contained nuclide	
Parameters	Released energy of type of radioactive ray j	Depends on the contained nuclide	Depends on the contained nuclide	Depends on the contained nuclide	
	Remarks	 The decay heat is assessed with software such as Radcalc^{*2} Sampling measurement is used to verify the validity of the range of inventory assessed 	 Information such as types of waste, quantity of waste, storage locations, generation history, radioactivity etc. in UK is collectively managed through a database. 	 The decay heat is calculated by an authenticated code α ray: CESAR *³ β ray: MCNP^{*4} γ ray: MCNP^{*4} 	

*1 UK Radioactive Waste Inventory *2 RadCalc® (Llfeline Software Inc.)

- *3 CESAR (Simplified Evolution Code Applied to Reprocessing). Code developed by CEA and COGEMA.
- *4 Monte Carlo Neutron and Photon Transport Code System. Transportation calculation code of radiation by the Monte Carlo method.

61

- Evaluation methods for hydrogen gas generation – G-value for evaluation -

The G-value was confirmed to be set according to the radioactive waste classification and the state of water.

		USA	UK	France
Carbonate slurry · When dry (5 to 20 wt.%): 1.6 w • When cement solidifies: 0.6 to 0.85*1 (E		Established based on discussions with the regulatory authorities (Example of initial settings is 0.4 or 0.45 for free water)	 Free water, cement hydration water: 0.452 (Documented value) Mg(OH)₂:0.051 (Documented value) 	
G-value (H ₂)	Iron co - precipitation slurry	Same as above	Same as above	 Free water, Cement hydration water: 0.452 (Documented value) Fe(OH), H₂O: 0.00529 (Actually measured value)
	Internal structures	Adhesive water:1.6 (After drying: 0)	Same as above	Adhesive water: 0.45
	cept of the /alue (H ₂)	 Organized as per the waste properties (presence of organic matter, presence of solidification, moisture content etc.).^{*2} Even if the waste does not contain α nuclides, the α ray G-value is conservatively assumed to be the base. 	 There are records where the G-value has been set as 0.05 to 0.5 considering the change of state of water due to cement solidification. Whether to adopt the reference value or the actually measured value is discussed with the regulatory authorities. 	 G-value of free water is used even after cement solidification. A lower G-value can be set when actual measurement is carried out. (0.032 for the DSC dry sludge) The G-value of waste is calculated from the sum of products of the mass fraction of the generation source and each G-value.

*1 Set according to the solidification conditions (depends on the type of cement material). In the case of Type I (OPC), G-value of 0.6 is used when the ratio of water to cement by weight is 0.45. In the case of Type V (ultrafine grout), G-value of 0.85 is used when the ratio of water to cement by weight is 0.8.

*2 CH -TRU Payload Appendices (Book)

*3 Dry Storage Container

- Investigation of required functions for a solid waste container -

During the present investigation, the same containers were being used for storage and disposal in the three countries. Therefore, the storage containers satisfied the requirements of the disposal sites. In addition, sealed containers were used for all transportation.

	USA	UK	France
Storage	In the USA, the containers that store the waste are used until waste disposal.	The requirements (Waste Package Specifications (WPS)) created by RWM Ltd. concerning the safe operations of	[CSD -C ^{*6}] • External dimensions: Φ430 x h1335 [mm]
Disposal	 External dimensions: Various sizes in cylindrical shape (Φ460 x h680[mm] to Φ2080 x h2740[mm]) Material: Carbon steel, stainless steel, high density polyethylene (HDPE), etc. The container is filled with various materials other than waste (coagulant, granular or powdered resin, cement shield), and these are considered as waste bodies. Moreover, at the WIPP disposal site, there is a list of certified vent filters^{*1} to match the containers. 	disposal facilities have been systematized ^{*2} and have become the standard in the UK. In WPS, requirements other than measures for generated gas, such as those concerning mechanical strength, shielding, thermal performance, and deterioration resistance, etc., account for a large portion. Moreover, the sizes have been decided in detail ^{*4} in order to enable transportation and geological disposal at GDF ^{*3} .	 Material: Walls and bottom: Equivalent to SUS316L [DSC] External dimensions: about Φ580 x about h1000 [mm] (about 250L) Material: Equivalent to SUS316L In both the cases, sintered metallic filter^{*8} similar to CSD-C is installed in order to maintain the hydrogen gas concentration at less than 4Vol% for 150 years^{*7}.
Transport	The sealed transportation casks are classified into Type A, LSA (Low Specific Activity) and Type B.	Type B casks are used for the transportation of radioactive waste, and the requirements concerning the management of the generated gas are stipulated ^{*5} .	[CSD -C] Various types of transportation containers manufactured by Transnuclear Ltd., such as TN81, TN843, TN28T etc., have been approved. Moreover, depending on the transportation scenario (1 year at 120°C under routine conditions and 7 days at 150°C in case of accident situations), documents are checked to confirm that the hydrogen gas inside the transportation containers is maintained at less than 4vol%.

*1: A minimum hydrogen diffusion factor has been stipulated in CH -TRAMPAC (book) for containers (e.g.: 55 Gallon drum) and the filter is selected from the approved filter list by comparing the performances.

*2: For instance, the "Radioactive waste Specifications" are listed in the WPS/300 series and WPS/300/03 specifies the technical requirements for 500 Liter drums.

*3: Geological Disposal Facility

*4: During transportation, the containers should not exceed the overall dimensions of 6.058 m x 2.438 m x height 2.591 m. In addition, while using railways, it should not exceed width 2.67 m or height 2.40 m.

*5: Maximum internal pressure (7Bar) and cumulative loss etc. (10 -6A2/1h, A2/1W) of radioactivity content during normal times or during accidents, have been stipulated.

*6: Solid container containing end piece wastes and miscellaneous solid waste compressed and sealed in a stainless steel container

*7: Assumed as the tentative operation period at the final disposal site in France.

*8: The PORAL filter model sold by Sintertech has been approved and is being used in both CSD-C and DSC.

-Survey of measures for hydrogen gas generation -

In the three countries, the moisture content (free water) is reduced to the extent possible by means of drying and cement solidification, etc. and the generated hydrogen gas is passed through a filter, released from the vent, and managed in the building.

	USA	UK	France
Measures for hydrogen gas generation	 At both the WCS and the WIPP disposal sites, a moisture content of 1vol% or less is acceptable. (Documents are checked at the disposal sites) The installation of a vent filter is mandatory. (Although TRU waste was disposed in sealed containers in the past, there are instances where the containers were retrofitted with vent filters thereafter) 	 Ferric hydroxide sludge After cement solidification, the waste surface is capped with grout and then covered with a lid that is designed to diffuse hydrogen through the screw threads. Barium carbonate slurry The process is almost similar to the process for the ferric hydroxide sludge. A lid integrated with the filter is installed. Mixed legacy waste Intermediate storage in 3 m³ containers (with a double wall to ease the risk of swelling, lined with concrete to prevent corrosion, and with a filter installed on the lid to release the gas) for several decades. Plutonium-contaminated material Several super-compacted 200 Liter drums are stored in 500 Liter drums and stuffed with grout. A lid integrated with the filter is installed. 	•Moisture content is decreased by drying (CSD -C: Operation results are available for moisture content of 5% or less in the hull and end piece wastes compressed body) Although the execution in case of DSC (sludge waste) is undecided, a drying process wherein the moisture content will reduce to 5% or less is under R&D.

-Summary of the FY2017 investigation results -

Hydrogen gas measures based on investigations in this fiscal year are summarized below from the aspect of reduction of free water, use of adequate G-values depending on materials and the type of rays, and storage using containers with vents.

Further, operators in all three countries determined reasonable methods of treatment, storage, and disposal, and coordinated with the regulatory authorities for their approval.

① Reduction of free water

- In the hydrogen gas generation evaluation, all three countries have been considering reduction of free water by drying or cement-solidification of waste, since decomposition of free water is basically predominant.
- The handling of free water and other water (example; cement crystallization water) varied by country.

Example)

- U.S and UK: Generated hydrogen is estimated taking into account the decrease or state change of free water by cement solidification
- France : G-value of crystallization water was set to estimate the source of hydrogen gas.

② Use of adequate G-values depending on materials and the type of rays

• All three countries classify the G-values for the estimation of the generated hydrogen gas depending on the characteristics of waste (such as water state, the type of organic materials, and the type of radiation)

③ Storage in containers with vent filters

- All three countries stored the waste investigated in this research in containers with vent filters and implemented gas measures such as ventilation in the storage facilities.
- Beside hydrogen gas, public exposure to fission products (H-3, Kr-85, etc.) was also considered.

©International Research Institute for Nuclear Decommissioning

-FY2018 Implementation Details -

In FY2018, the measures for hydrogen gas generation were studied together with the manufacturers from all three countries on the basis of regulations and past results in the three countries during each phase from temporary storage until disposal, in the context of slurry waste and internal structures that form the 1F solid waste. In addition, the applicability to the 1F solid waste and related challenges were organized based on these results.

No.	Selected waste	Reasons		
1	Slurry waste (Carbonate slurry and iron co- precipitation slurry in HIC)	The operators are studying dehydration treatment, and measures for hydrogen generation will become very essential during storage after the dehydration treatment. There are similar experiences in all three countries and knowledge can be expected to be obtained.		
2	Internal structures	The metallic internal structures were selected as waste expected to be generated at the time of fuel debris retrieval. Waste was assumed to have moisture adhering to the surface. There are similar experiences in all three countries and knowledge can be expected to be obtained.		

- Results of study on slurry waste by manufacturers from the three countries -

Phase	USA	UK	France
Temporary storage (20 to 40 years)	Stored ^{*2} in containers with vent filters after drying ^{*1}	Stored in containers with vent filters or non-sealed tanks after dehydration	Stored in containers with vent filters or large tanks (silo) after dehydration
-	Cement solidification	Cement solidification	• Drying*4
Treatment	Glass solidification *3	 Glass solidification*³ 	Cement solidification
Predisposal storage (about 100 years)	• Similar to temporary storage (However over packing is recommended to prevent leakage into the environment)	Similar to temporary storage	Similar to temporary storage
Disposal	 Disposal in the containers with vent filter In case of near surface disposal: No special hydrogen measures are taken*5 In case of geological disposal: During operations, the concentration of hydrogen is kept below the combustible limit by means of the ventilation system 	 Disposal with the waste retained in the containers with vent filter During operations, the concentration of hydrogen is kept below the combustible limit by means of the ventilation system 	• Disposal in the containers with vent filter

*1 For instance, the moisture content is dried to up to 5 to 20% with the horizontal thin-film-concentrator. However, this is mainly for volume reduction.

*2 In the USA, after the waste is generated, it is promptly transported to the disposal site. As per Generic Letter 81-38 and NRC Info Notice 90-09, the regulatory authorities require that storage should in principle not exceed five years.

*3 Hydrogen measures are found to be unnecessary in the case of glass solidification.

*4 In France, the method of drying with a thin-film dryer and then compressing with a pressing machine is being researched. The drying tests were performed on various types of sludges and it was confirmed that the moisture content became 1 to 5% in all cases.

*5 The generated hydrogen gas diffuses in the covering soil or in the synthetic liner and is released into the environment.

The slurry waste is stored in containers with vent filters from the time of temporary storage until disposal.

- Results of study on internal structures by manufacturers from the three countries -

Phases		USA	UK	France	
Temporary storage (20 to 40	Containers with vent filters	Scavenging by ventilation system or outdoor storage (However, in the US, the structures retrieved from the reactor are immediately dismantled and put in to the final disposal containers)	Scavenging by ventilation system [Results] Yes Proven track record regardless of the presence of cement solidification	Scavenging by ventilation system	
years)	Sealed containers	Drying treatment [Results] Yes (GTCC*1, use of sealed casks similar to those used for spent fuel)	Drying treatment [Results] No	Drying treatment [Results] No	
Treatment	Common	There is no special treatment for the measures against hydrogen gas generation (severing, etc.)			
Predisposal storage (About	Containers with vent filters	Similar to temporary storage	Similar to temporary storage	Similar to temporary storage	
100 years)	Sealed containers	Similar to temporary storage	Similar to temporary storage	Similar to temporary storage	
Disposal	Containers with vent filters	[Results] Yes If structure is Class C or lower, near surface disposal is carried out, and there are no measures against hydrogen gas generation (released by diffusion)	[Results] No The disposal site is at the design stage	The structure must meet the disposal site acceptance standards (10[(NL/y/container]) by drying	
Disposal	Sealed containers	[Results] No When classified as GTCC*1, the structures are placed in sealed containers and geological disposal is carried out. E.g.: Yucca Mountain (safety evaluation is underway)	[Results] No (However, can be disposed in sealed containers as long as the waste is sufficiently dry and is not cement solidified.)	[Results] No (However, can be disposed in sealed containers as long as the waste is sufficiently dry and is not cement solidified.)	

*1 Waste Greater than Class C. Dried waste is stored in sealed casks and kept outdoors for dry storage.

Internal structures are generally managed in containers with vent filters,

but dry treatment is necessary when the structures must be managed in sealed containers.

- Summary of the results of studies by manufacturers from the three countries -

[Slurry waste]

- As seen from the results of the three countries, the accumulation of hydrogen gas inside the containers was suppressed below the explosion limit by storing the waste in containers with vent filters from the time of temporary storage until disposal.
- Certified vent filters are being used. (examples of USA and France).

[Internal structures]

- The need for dry treatment is determined depending on the requirements of the disposal site.
- ✓ Cases when dry treatment is carried out:
 - ⇒ For instance, when there is a requirement for storage in sealed containers or when the volume of hydrogen generation permitted at the disposal site is low etc.

[Common]

- The vent filter was selected by evaluating the hydrogen generation speed based on the set G-value.
- During the storage facility or disposal site operations, the hydrogen gas was scavenged using the ventilation system.

In all three countries, the containers with vent filters were used in general from the time of storage until disposal.

- Challenges in application to 1F -

<Containers with vent filters>

- ① Performance requirements for vent filters and establishment of methods for securing their performance
 - The vent filter is required to release the gases including hydrogen without releasing the solid waste from the container during a stipulated period, and these performance requirements need to be formulated.
 - Establishing methods to secure performance requirements, including those related to lifetime and corrosion.

<Measures for hydrogen gas generation during storage>

- ① Development of drying methods and control values
 - Formulating the control values for moisture content, drying methods to satisfy these control values, and methods to verify the control values.
- ② Setting of G-values according to waste classification
 - Formulating the methods for setting G-values and waste classification and carrying out a reasonable evaluation of hydrogen gas generation.
- ③ Feedback to the ventilation systems of the storage facilities
 - Providing feedback on the hydrogen gas generation speed to the ventilation systems of the storage facilities.

<Measures for hydrogen gas generation during disposal>

 $(\ensuremath{\mathbbm l})$ Feedback for safety evaluation at the disposal sites

Evaluating the impact of using containers with vent filters for post-closure safety evaluation

(2) Measures for wastes generated by fuel debris retrieval (1/8)

FY	Implementation Plan	Goal achievement index
2017	 The latest information on wastes generated by fuel debris retrieval work is collected and organized based on study results from other projects conducted for fuel debris retrieval (such as the project of fuel debris retrieval, and containment, transport and storage of fuel debris). The proposed waste storage and management methods are studied based on collected and organized information. 	• Presentation of the latest information of projected wastes generated by fuel debris retrieval work based on study results from other projects conducted for fuel debris retrieval (such as the fuel debris retrieval project and the containment, transport and storage project).
2018	• The latest information is collected and organized in cooperation with other projects conducted for fuel debris retrieval (such as the fuel debris retrieval project, and the containment, transport and storage project). All proposed reasonable methods to store and manage wastes generated by fuel debris retrieval work are consolidated and the recommendable methods will be presented taking into account the fuel debris retrieval process as well as the collected and organized information.	 Consolidation of all proposed reasonable methods to store and manage wastes generated by fuel debris retrieval work and presentation of recommendable methods taking into account fuel debris retrieval process as well as the collected and organized information.

Progress status

- The waste generated by fuel debris retrieval was classified into four categories and the waste information, such as the estimated generation volume, the estimated dose etc. was consolidated.
- A safety functions requirements list stating the safety functions required at various steps until storage, was compiled for the internal structures, and multiple, feasible storage and management flows were created.
- Based on the storage and management flow, a study was conducted on the proposed functional requirements of containers and storage buildings.
- Based on the functional requirements of containers and storage buildings, the proposed outline specifications were studied.

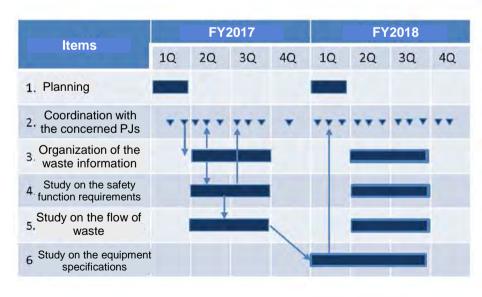


Figure 1 Implementation Schedule

70

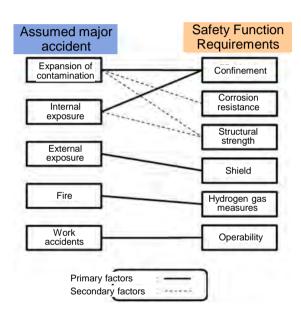
(2) Measures for wastes generated by fuel debris retrieval (2/8)

<Organization of waste information>

The waste generated before and during fuel debris retrieval was classified into four categories and the waste information generated by fuel debris retrieval was organized. (Table 1)

Table 1. Types of waste generated by fuel debris retrieval

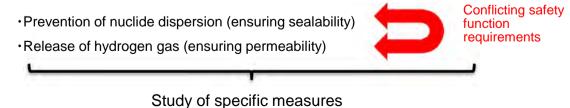
Classification of generated waste	Generated waste	Estimated generation volume (Per reactor)	Estimated dose	It is assumed that the conventional storage and management methods	
Objects removed from 1FL refueling floor	Equipment, piping, walls, floors, pillars etc.	3700 t	3E+11Bq/t or less (Presumed to be equivalent to L3 to L2)	can be applied. In the future, the applicability will be verified by investigating the properties of the waste.	
Internal structures	Shield plug PCV head RPV insulator RPV head Steam dryer separator, etc.	 Top debris retrieval: 670 t Side debris retrieval: 67 t 	3.4E+12~1E+16Bq/t (Presumed to include L1 equivalence)	Waste that requires high radiation waste measures Events that must be taken into account and the main countermeasures	
Retrieval equipment	Drill manipulator camera, etc.	TBD (Depends on the retrieval method)	Presumed to be equivalent to L3 to L1	 External exposure → Shield Internal exposure → Confinement Hydrogen measures → Venting etc. 	
Air-conditioning and water treatment system waste	HEPA filter Water treatment filter Waste adsorbent, etc.	About 170 t/year	Presumed to be equivalent to L3 to L1	Heat measures → Air cooling (•Criticality Control)* *It is assumed that objects that need criticality control are stored in canisters.	



(2) Measures for wastes generated by fuel debris retrieval (3/8)

<Organization of waste information>

"Safety Function Requirements List"


The risks and the safety function requirements at each work step were studied assuming major accidents.

Clarification of safety functions required at individual work steps (during collection, transfer and storage) Risks and safety function requirements "During transport" from the Safety Function Requirements List

•	Major accident	Assumed reference cases		Risks	Countermeasures (examples)
During transport	Spread of contamination	•Transportation container falls due to which it gets damaged and contents leak out.	High	•If contamination spreads within the premises, the impact is huge.	•To ensure structural strength such that the transportation container does not get damaged if it falls.
	exposure	•Workers exposed to radiation due to inhalation when the α nuclides leak out from a container.	High	•The possibility of internal exposure is high when dust containing α nuclides leaks out.	•To ensure the confinement performance of the transportation container.
	External exposure	•Worker close to the transportation container directly impacted and exposed to radiation.	High	•The possibility of external exposure is high when the ransportation container does not have the appropriate shielding ability.	•To ensure shielding by means of the shield thickness of the transportation container. •To carry out unmanned transportation if the surface dose is high.
	Fire	•Hydrogen gas permeates inside the transportation container and ignites.	High	\cdot The hydrogen concentration might rise if moisture and α nuclides are present inside the sealed container.	•To manage the time such that the hydrogen concentration stays below the lower limit of explosion.
	Work accidents	•Worker injured due to the falling of a transportation container.	Low	•Carries the same level of work risk as the usual freight transportation.	•To carry out fall prevention measures for the transportation container.

The most important problem is the study of methods compatible with the following

(2) Measures for wastes generated by fuel debris retrieval (4/8)

<Existing technological investigations>

An investigation of past reference cases concerning the processes from transportation to storage of nuclear fuel, fuel debris and internal structures was carried out.

Although there are examples of temporary wet storage, in most cases, the final stage is dry storage. In the case of wet storage at 1F, securing the pools or the operation of the water treatment system poses a challenge.

□ In the case of dry storage, containers with filter vents or dry treated + sealed containers are used as hydrogen measures. (Table 1)

□ IAEA recommends the use of containers with vents as a hydrogen measure.*1

There are cases where the waste containing nuclear fuel material is stored in containers with vents. Especially, at TMI-2, containers with vents have been used for dry storage when complete dryness could not be confirmed due to uncertain debris properties.

No.	Storage Methods	Hydrogen measures	Main application examples	Challenges in 1F application	Horizontal Silo Canister body Canister lid
1	Drying / no venting	Completely dried + sealed storage container	Zion (USA)	• Development of complete drying technology and equipment scale and time associated with drying	
2	Drying / venting	Exhaust by means of filter vent	• TMI-2 (USA)	Development of filter vent which prevents dispersion of nuclides and prevents hydrogen retention	Canister
3	Wet storage/no venting	Submersion + Open storage container	Replacement of 1F shroud	Contamination of the pool due to nuclear fuel material Securing the pool and water treatment system are necessary	Dry storage (Horizontal Silo) 1999 onwards: Start of dry storage Schematic diagram of TMI-2 fuel debris dry storage
4	Wet storage / venting	Vent piping/Compensator	∙Paks-2 (Hungary)	 Vent structure is necessary to prevent the contamination of the pool water Securing the pool and the water treatment system is necessary 	(Reference: Subsidy Project of Decommissioning and Contaminated Water Management in the FY2015 Supplementary Budgets, Development of Technology for Collection, Transfer and Storage of Fuel

Table 1. Hydrogen measures during storage

*1.IAEA, Containers for Packing of Solid Low and Intermediate Level Radioactive Waste, IAEA Technical Reports Series No.355, 1993.

Debris)

Sampling hole

(2) Measures for wastes generated by fuel debris retrieval (5/8)


<Study on the storage and management flow>

 \Box Based on the study results of the safety function requirements, storage and management flow charts that can meet the safety function requirements at each step (① to ④) were created. (Figure 1)

□ The basic policy is to use storage containers with vents and during transportation, the storage containers will be loaded with sealed transportation containers.

<Study on equipment specifications>

Based on the created storage and management flows, a study on the functional requirements of the containers and storage buildings was conducted. (Table 1)

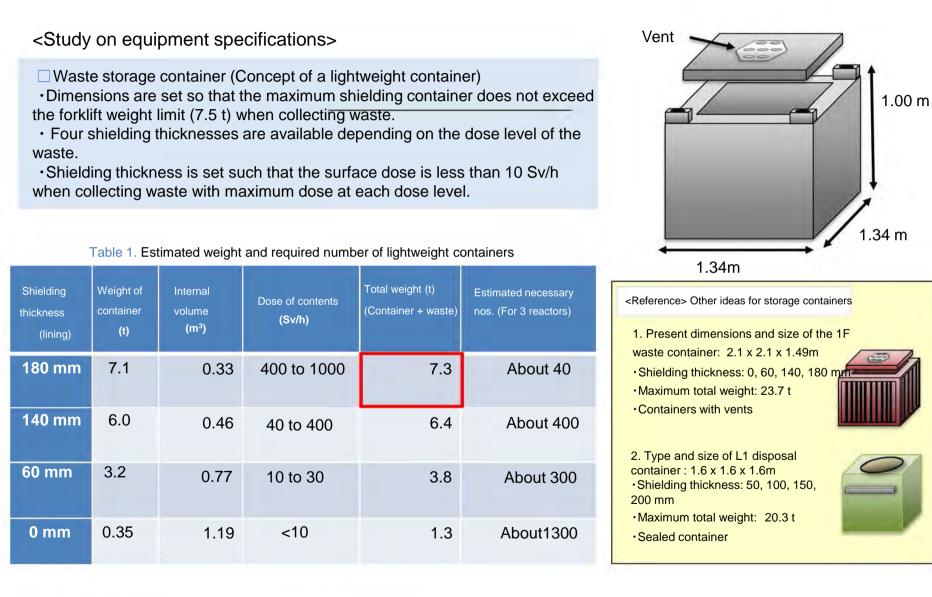

Items	Requirement specifications						
Shape	To be decided after considering the equipment weight limitations, etc.						
Material quality	Corrosion-resistant material						
Confinement function	Should have the confinement function						
Shielding	Should have shielding functions that meet the acceptance criteria of the storehouse						
Hydrogen measures	Should have the filter vent function						
Operability	Should be easy and safe to handle						
Structural strength	Should have the structural strength to bear stacking, fall						

Table 1. Example of the safety function requirements for the waste storage containers (Overview)

Figure 1. Example of storage and management procedure of highly radioactive internal structures (Overview)

(2) Measures for wastes generated by fuel debris retrieval (6/8)

RD

75

(2) Measures for wastes generated by fuel debris retrieval (7/8)

<Estimated volume of waste generated during debris retrieval and the required scale of storage facilities (Total for 3 reactors)>

Classification of generated waste	Estimated generation volume (for 3 reactors)	Estimated dose	Storage containers	Required number of containers	Estimated dose limits for the storage buildings	Total floor space required for storage buildings
Objects removed from 1FL refueling floor	11100 t	Equivalent to L3 to L2	Present waste containers (No shielding) (ILW containers for some portion of the high radiation dose piping, etc.)	4200 units	Less than 30 mSv/h *1	14000 m ² or more ^{*3}
Internal structures	2010 t	Equivalent to L1	Lightweight containers	Shielding thickness / units 180 mm / 40 units 140 mm / 400 units 60 mm / 300 units 0 mm / 1300 units	Less than 10 Sv/h *2	3100 m ² or more ^{*3}
Retrieval equipment	TBD	Equivalent to L2 to L1	Lightweight containers	-	Less than 10 Sv/h ^{*2}	-
Air-conditioning and water treatment system waste	510 t/year	Equivalent to L3 to L1	Light-weight containers (Some filters etc. may be treated as debris)	-	Less than 10 Sv/h ^{*2}	-

*1: Equivalent to the basement first floor of the solid radioactive waste storage facility No. 9.

*2: Equivalent to the basement second floor of the solid radioactive waste storage facility No. 9.

*3: The bottom area x 1.5, rounded up to two significant digits, when the required numbers of each container are placed in a two-tier stack without gaps.

*4 : It is assumed that the solid waste containers used at 1F presently are used for the low radiation waste.

a. Study of safety measures required for the storage of highly radioactive waste(b) Measures for wastes generated by fuel debris retrieval (8/8)

<Summary of Results>

① Based on the study of other projects on fuel debris retrieval, the waste generated by retrieval of fuel debris was classified into four categories and <u>the latest information was consolidated</u>.

⁽²⁾ Taking the consolidated waste information and fuel debris retrieval methods into account, the methods to safely collect, transfer and store <u>the internal structures</u> were studied and a <u>proposal for the flow of processes</u> <u>until the point of storage</u> was presented.

③ Based on the proposal for the flow of processes until the point of storage, the functional requirements of storage containers were consolidated and <u>examples of storage containers</u> that satisfy the functional requirements <u>were presented</u>.

<Challenges>

It is estimated that as the study on fuel debris retrieval methods progresses, the waste information will gradually become more detailed and specific. <u>The information must continue to be consolidated in the future as well.</u>

② It has become apparent from the consolidated waste information that waste is generated by the <u>retrieval</u> equipment and the air conditioning and the water treatment systems, and it is necessary to study the methods to <u>safely collect</u>, transfer and store this waste.

③ The <u>hydrogen gas measures need to be put into practice</u> (assessment of the amount generated, containers with filter vents, drying facilities) and the functions required of the facilities related to the hydrogen gas measures <u>need</u> to be studied.

Consolidation of the management items of waste, and study on the measurement and evaluation methods.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation —FY2018 Implementation Details -

Public invitation details

Development of technology related to measurement and evaluation methods for surfaces, such as concrete, contaminated (α-contamination) by α-ray releasing radionuclides, and the extent of penetration through such surfaces (depth and volume of penetrated contamination), based on applicability to the site, so that solid waste can be segregated reliably.

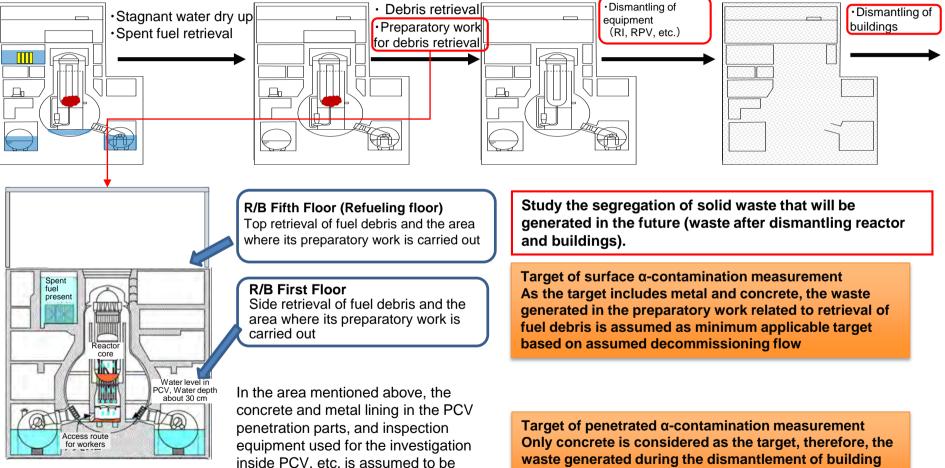
Details of implementation in 2018 (Cited from supplementary documents in the public invitation proposal)

- For the α-contamination of surfaces, a detector will be prototyped for the surface α-contamination measurement device and element tests will be conducted based on the study results of "Research on Technologies for Reducing Waste Production" in the Subsidy Project of Decommissioning and Contaminated Water Management "R&D for Treatment and Disposal of Soli d Radioactive Waste" in FY2017. Based on the test results, issues will be identified with respect to the actual application to 1F.
- For the α-contamination penetrating through the surface, the use cases for the technology for measuring the penetration de pth of α-nuclides and the penetrated contamination level will be assumed in the procedure from the generation of waste unti l its disposal. In addition, the technology which can be applied in the assumed cases will be selected and the issues in the a ctual application of the selected technology will be identified.

Schedule

	June	July	Augu st	Septe mber	Octo ber	Nove mber	Dece mber	Janu ary	Febr uary		June	July	Augu st	Septe mber	October	November	December	Janu ary	Febr uary
Device designing and planning										Study on the purpose and object of measurement									
Study of agona of an aita																			
Study of scope of on-site application (provisional)										Survey of existing									
Study of detector specifications										technologies in Japan and overseas									
and manufacturing										Study on specification									
Testing										of the scope of on- site application									
Study on specification of the scope of on-site										Identification of issues in application									
application										to actual equipment									
Identification of issues in application to actual equipment																			

Study on surface α -contamination


Study on penetration of α -contamination

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation - Study on scope of on-site application -

Waste to be segregated and targets for application of measurement technologies

[Assumed Decommissioning Flow (Example: R/B)]

Cross-sectional view of R/B (Example of Unit 2)

inside PCV, etc. is assumed to be the waste that gets generated.

concrete is assumed.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Purpose of this research-

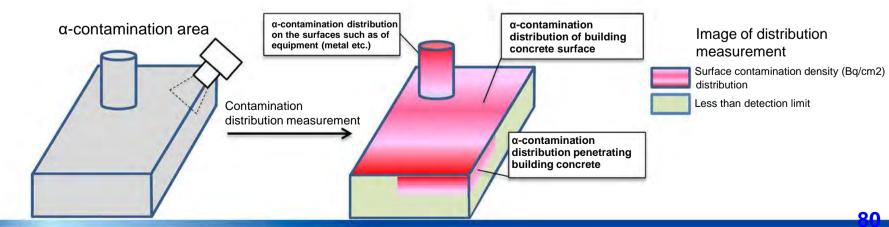
Current status and issues related to α -contamination waste management

Current status of α-contamination waste management

When α-nuclide contamination with surface contamination density of 0.4 Bq/cm2 or more is detected by smear measurement, the waste is stored in storage containers.

However, in the future, large quantity of waste will be generated as the decommissioning work gathers momentum. Therefore, considering the measurement time and exposure, it will not be realistic to segregate all the waste by smear measurement after dismantlement.

Needs related to waste segregation technology


 \Box To be able to understand the contamination distribution of targets before dismantling the same. (4^{#1} Bq/cm2, 40^{#2} Bq/cm2 to be set as standards required for the waste segregation technology)

 $\hfill\square$ To minimize the measurement time and reduce the exposure involved in the measurement work.

#1: Set as a criteria for α -contamination waste equivalent to L3 #2: Criteria for α -contamination waste equivalent to L2

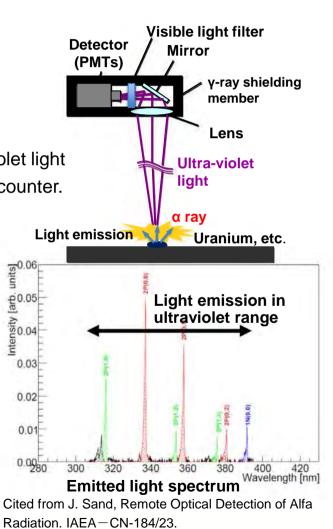
□ Purpose of this research

To develop a technology that can **comprehensively and in a short time** measure items (or area) to be dismantled, before the dismantling operation, considering the measurement environment and accessibility, with respect to applicability of the technology to the site.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation Study on surface α-contamination Overview of the technology selected in FY2017

Surface α-contamination measurement technology (hereinafter referred to as "alpha camera") using excitation of nitrogen was selected based on the study results of requirements in light of the accessibility and measurement environment on the site.

Measurement principle


- An α particle reacts with nitrogen in its flying distance (a few centimeters) and generates a few hundred photons of ultra-violet light.
- ② The strength of α-rays is measured by collecting generated ultra-violet light through a lens and counting the number of photons using a photon counter.

Example of publication of results related to alpha camera

 Kume N(2013), "Remote Detector of Alpha-Ray Using Ultraviolet Ray Emitted by Nitrogen in Air", IEEE2013NSS
 Kume N(2015), "REMOTE DETECTION OF ALPHA RADIATION USING UV PHOTONS EMITTED BY NITROGEN, ICONE-23"
 Naoto Kume (2013) "Remote Measurement Technology for Alpha Radioactivity", 2013 Spring Meeting of Atomic Energy Society of Japan
 Naoto Kume (2014) "Remote Measurement Technology for Alpha Radioactivity - Application to Lighting

Environment-" 2014 Fall Meeting of Atomic Energy Society of Japan

There was no experience of application of alpha camera on the site, therefore, in FY2018, an element test simulating the 1F measurement environment will be implemented, and issues in application to actual equipment will be identified.

IRID

©International Research Institute for Nuclear Decommissioning 81

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on surface α-contamination-

Existing alpha camera issues with respect to requirement specifications

•Requirement specifications for devices are assumed based on the study results of the measurement environment.

•In order to deal with the issues, ① the alpha camera is improved based on the requirement specifications, and ② the tests (basic performance test, element test) necessary for assessing the detection performance are identified.

	Item	Requirement specifications	Existing alpha camera	Issues	Test items	
Acc	Measurement Distance	Maximum 3m	Implemented up to 1 m	Assessing device composition that obtains detection performance equivalent to 1 m in the measurement distance of 3 m	Basic performance test: Lens assessment	
Accessibility	Measurement target shape	Spherical surface, uneven, plane surface	Not implemented	Acquiring data dependent on the shape of the contaminated surface	Element test: Complex source assessment	
У	Weight	Depends upon the trolley	Weight of shielding member not assessed		Element test:	
	Environmental dose rate	About 50 mSv/h (Maximum about 150 mSv/h)	Assessed in part		Test related to impact of environmental dose rate	
Measurement	Environmental temperature	-5℃ to 35℃	Implemented only with a detector		Element test: Temperature test	
rement	Environmental humidity	Maximum100%	Not assessed	•Acquiring data related to impact of environmental dose rate, temperature, humidity, ambient	Element test: Humidity test	
	Lighting	Lighting present depending on the situation	Implemented in part (Red light)	light, and dust	Basic performance test: Optical filter assessment	
environment	Dust	More than outdoor dust Not assessed			Element test: Test related to impact of dust	
	$\beta\gamma$ nuclide concentration	$\alpha / \beta \gamma = 1 / 10^{6-8*}$	Assessed in part	Acquiring sensitivity data with respect to By rays	Element test: Impact assessment test for βγ nuclide concentration	

* Set on the basis of results obtained from the characterization in this project

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on surface α-contamination-FY2018 Implementation Details

① Improvement in alpha camera based on requirement specifications

- A) Attained high sensitivity and low noise to obtain detection performance equal to that of the existing alpha camera even in the case of extended measurement distance.
- B) Added a function to understand the measurement distance up to the measurement target assuming various shapes, in two dimensions.
- C) Reduced weight of moving parts (reviewed the shielding member) so that the device weight takes accessibility into account.

② Assessment of detection performance

- Basic performance tests were conducted to determine the composition of devices such as optical systems, and element tests were conducted in accordance with environmental conditions to assess the limitations of this method.
- □ The detection performance was assessed based on the results of element tests and compared with the standards (4 Bq/cm², 40 Bq/cm²) required in waste segregation technology.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on surface α -contamination-

① Improvements in alpha camera based on requirement specifications

• Existing alpha camera was improved based on the requirement specifications arising from accessibility assuming on-site application.

	electronica.					
	SE NUE ROMA PF Viter (Vrotal - Vene Art Vene (Vrotat - Vene Art Vene (Vrotat - Vene Art Vene (Vrotat - Vene Art) Vene (Vrotat - Vene Art)			Main p Required functions	oi <u>nts of imp</u> Items	rovement Points of improvement
Camera with attached distance sensor	H2 	Combined α - contamination distribution	A	High sensitivityLow noise	Lower limit of detection 4 Bq/cm2 assuming measurement environment	 a) Increase the size of lens Lens aperture diameter to be changed from φ50 mm to φ100 mm b) Study on shielding structure Tungsten (3 cmt) c) Thermal noise reduction through temperature control function Control the temperature so that it is always at 25°C or less
		with camera images	В	Understand the distance up to the target in two dimension	of contaminatio	Use a camera with attached distance sensor to obtain image and distance information
		(ultraviolet rays) light receiving unit	С	Reduce the weight of moving parts	Accessibility	Separate the power source so that it can be placed on the fixed part of the trolley

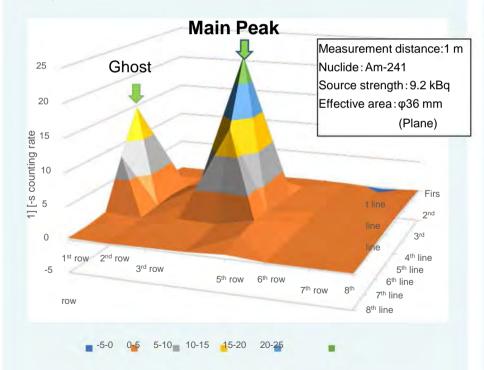
Overview of improved alpha camera

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on surface α -contamination-

②Assessment of detection function: Overview of basic performance test and element results of the improved alpha camera

	Items	Requirement Specifications	Test Items	Overview of results			
Basic performance test	Measurement distance	Maximum 3m	Basic performance test: Lens assessment	 Sensitivity is inversely proportional to the square of the distance Confirmed a case where the location with no surface α-contamination attained a peak (ghost). There was a case where 4 Bq/cm2 could be measured by using Φ100mm lens and by extending the measurement time. 			
Basic p	Lighting	Lighting present depending on the situation	Basic performance test: Optical filter assessment	Sensitivity decreases to 78% with the use of optical filter			
	Measurement target shape	Spherical surface, uneven, plane surface	Element test: Complex source assessment	 Impact is low if measurement direction (spherical surface) is 0 to 90° Sensitivity degrades to 71% at the time of measurement of contamination of concave portion with a depth of 25 mm. At a depth of 50 mm, it degrades by 67%. 			
	Weight	Depends upon the trolley	Element test: Test related to	Confirmed Y-ray sensitivity of 3.3 [s-1/mSv/h]			
Element test	Environmental dose rate	About 50 mSv/h, (Maximum about 150 mSv/h)	impact of environmental dose rate	#Confirmed locations where the shielding effect was weak at some angles of incidence. Improvement required.			
eme	Environmental temperature	-5°C-35°C	Element test: Temperature test	There is no impact on noise if temperature control mechanism is used.			
Ele	Environmental humidity	Maximum 100%	Element test: Humidity test	Even if humidity is 95%, decline in sensitivity is 3% or less. #Sensitivity shows a declining trend if water is added to the source			
	Dust	More than outdoor dust	Element test: Test related to impact of dust	Variation in sensitivity even in outdoor environment is 1% or less. Variation in sensitivity is 2% or less even in environments where the double-digit dust density is more common than in outdoor environments			
	βγ nuclide concentration	a⁄βγ=1/10 ^{6~8} *	Element test: Impact assessment test for βγ nuclide concentration	Obtained relative sensitivity to α -rays β -ray (Co-60): 0.36% γ -ray (Cs-137): 0.009%			

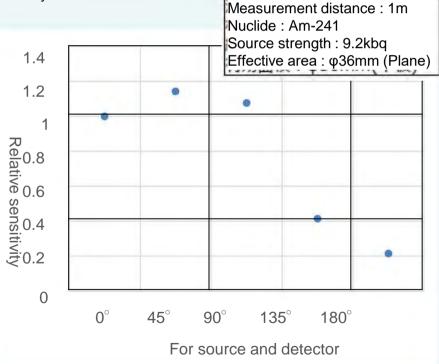
85


(3) Development of Contamination Evaluation Technology for Solid Waste Segregation

-Study on surface α-contamination-

2 Assessment of detection performance: Test results (Example)

Basic Performance Test (Lens assessment)


•Confirmed the peak derived from α -rays. However, ghost constantly exists. (It is necessary to investigate the cause in the future.)

Distribution when a lens with aperture diameter Φ 100 mm and focal distance f45.5 mm is used

Test to confirm the impact of measurement target shape

•Even if measured from 0° (face to face) to 90° (directly horizontal), if the relative angle is more than 90°, the source itself will be shaded and sensitivity will deteriorate.

Dependency on source for measurement sensitivity with respect to α -rays

86

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on surface α -contamination-

② Assessment of detection performance: Assessment of measurement performance

The lower limit of detection at conditions assumed for on-site application is calculated using the Currie equation.

(The detection sensitivity is assessed anticipating a situation where the dummy peak can be correctly focused.)

□ Lower limit of detection

Calculated from signal S[s-1/(Bq/cm2)]* derived from α-rays, and from another signal N.

*Reference area for calculating the surface contamination density (Bq/cm²) is 100 cm² (10 cm x 10 cm) .

Lower limit of detection X is calculated by the Currie equation

$$X = \frac{\sigma^2 + 2\sigma\sqrt{2N \cdot t}}{S \cdot t}$$

t: Measurement time (s) σ = 1.65 (95% reliability) Parameters that influence the detection performance (Temperature, humidity, and dust are not included as they do not affect the performance)

- Measurement distance
- Environmental dose rate at the location where the alpha camera is installed
- $\beta\gamma$ surface contamination density in the field of vision measured by the alpha camera

Measurement distance	Assumed environmental dose rate	$\beta\gamma$ Surface contamination density	Measurement time	Lower limit of detection
1 m	3 mSv/h	1 kBq/cm2	30 sec	2.6 Bq/cm2
3 m	3 mSv/h	1 kBq/cm2	1000 sec	4 Bq/cm2
0.5 m	15 mSv/h	31 kBq/cm2	1000 sec	0.4 Bq/cm2
1 m	15 mSv/h	31 kBq/cm2	1000 sec	1.8 Bq/cm2
1 m	50 mSv/h	31 kBq/cm2	1000 sec	2.3 Bq/cm2

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on surface α-contamination-

② Assessment of detection performance: Details of performance assessment results

- The lower limit of detection was assessed by fixing the measurement distance at 1m and using the measurement time, environmental dose rate, and surface contamination density as parameters.
- The lower limit of detection may be improved by reviewing the optical system and the structure of shielding member.

			Environ	mental do	ose rate at	the location	where the a	Ipha camera is	installed	Legend: Lower limit of
		Measurement time [sec]	1mGy/h	5mGy/h	10mGy/h	20mGy/h	50mGy/h	100mGy/h	150mGy/h	detection 0.4 Bq/cm ² or less
	1	60	1.2	2.3	3.9	5.5	7.1	10.0	12.2	4 Bq/cm ² or less
	0.1	300	0.5	1.0	1.7	2.4	3.2	4.4	5.4	
		1000	0.3	0.6	1.0	1.3	1.7	2.4	3.0	40 Bq/cm ² or less
		60	1.6	2.5	4.0	5.6	7.1	10.0	12.2	
	1	300	0.7	1.1	1.8	2.5	3.2	4.5	5.5	More
		1000	0.4	1st floor, I	R/B, Unit 2	×1 1.4	1.7	2.4	3.0	· · · · · · · · · · · · · · · · · · ·
Surface	10	60	3.6	4.1	5.2	5th floor,	R/B 7.9	10.5	12.7	
contamination density in the		300	1.6	1.8	2.3			4.7	5.7	
measurement ange of alpha		1000	0.9	1.0	1.3	well)	1.9	2.6	3.1	
camera		60	11.0	11.1	11.6	12.2	13.0	14.8	16.3	7
kBq/cm²]	100	300	4.9	5.0	5.2	5.4	5.8	6.6	7.3	There is little
		1000	2.7	2.7	2.8	3.0	3.2	3.6	4.0	
		60	34.4	34.5	34.6	34.8	35.1		3, Unit 2 _{36,5}	limit of detection
	1,000	300	15.4	15.4	15.5	15.6	15.7	(at the centr	10.3	
		1000	8.4	8.4	8.5	8.5	8.6	well)	8.9	environmental dos
		60	108.6	108.7	108.7	108.8	108.9	109.1	109,3	rate increases.
	10,000	300	48.6	48.6	48.6	48.6	48.7	48.8	48.9	
		1000	26.6	26.6	26.6	26.6	26.7	26.7	26.8	

This assessment shows the alpha camera may have applicability in the assumed target range (Unit 2 R/B 1st and 5th floors) when extending the

measurement time. In future, improvement of the optical system and the shielding structure will be promoted to improve the lower limit of detection

#1: Cited from "Implementation Report of decontamination inside the ducts at Unit 2 R/B 1st floor, and Progress report of dose reduction at Units 1–3 R/B 1st floor", Tokyo Electric Power Company Holdings, Inc. (2016) #2: Cited from "Results of survey conducted after moving and clearing remaining objects on the Operating Floor of Unit 2 R/B", Tokyo Electric Power Company Holdings, Inc. (2019)

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation Study on surface α-contamination Challen are related to an aits application

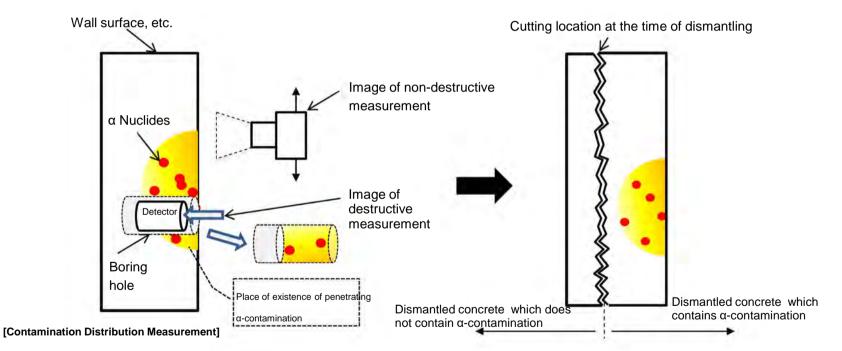
Challenges related to on-site application

<Main body of alpha camera>

- 1. Improvement of the device using basic data acquired this year (dependency on sensitivity of lens aperture, etc.)
 - Improvement in sensitivity by improving the optical system (lens and filter)
 - Selection of a detector in accordance with the optical system (focal length and aperture of the lens)
- 2. Improving issues observed in the improved alpha camera
 - Ghost (peak generated in places other than the source location) management
 - Reducing the noise from the direction where the shielding effect is low
- 3. Assessment of distribution measurement performance (resolution) when measuring α-ray source of complex shapes
- 4. Implementation and assessment of correction methods for measurement distance and environment

<Measurement system (In combination with remote control device)>

- 1. Implementation and assessment of algorithms that can comparatively assess the results of complex measurement points (positional accuracy, environmental correction, etc.)
- 2. Implementation of functions required in a measurement system (three-degree-of-freedom travelling trolley, tilt mechanism, lifting function), and performance assessment



(3) Development of Contamination Evaluation Technology for Solid Waste Segregation

 Study on penetrating α-contamination Purpose of measurement and policy for investigation of technology

□ Purpose of measurement

To understand the depth of penetrating α -contamination before dismantlement, in places associated with building concrete dismantlement, and to segregate contaminated and non-contaminated building concrete so as reduce α -contamination waste.

□ Policy for investigation of technology

- Destructive measurement: Investigate measurement technology by measuring inner surface of boring hole and outer surface of boring core.
- Non-destructive measurement: Direct measurement is difficult because α-rays cannot permeate up to the concrete surface, so investigate indirect measurement technology.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on penetrating α-contamination-

Assessment of penetration behaviour of nuclide

As it is difficult to measure penetration of α -contamination directly, assessment of γ -nuclides, which penetrate more easily than α -nuclides, was studied.

□ Penetration model of nuclides

It is known that nuclides penetrate into concrete by repeated dissolution in the liquid phase (such as contaminated water) and adsorption to a solid phase, and the extent of penetration depends on the distribution coefficient Kd of the nuclides for concrete.*1

Penetration model of nuclides

□ Penetration behaviour of nuclides

As for the distribution coefficient of typical α nuclides (U,Pu), β -nuclides (Sr), and γ -nuclides (Cs) with respect to concrete in 1F, it has been reported that the coefficient of U and Pu is at least two-digit larger than that of Cs and Sr.*2

From the distribution coefficient for concrete, it can be assumed that compared to α -nuclides, fission products such as Cs have penetrated into concrete. Distribution coefficient Kd with respect to concrete composition

	NaO,KO	Ca(OH)2	CSH,AFm,AFt	CaCO3
U	U(IV):2E+03 U(VI):3E+04	U(IV):3E+04 U(VI):3E+04	U(IV):3E+04 U(VI):3E+04	U(IV):5E+01 U(VI):3E+04
Pu	Pu(IV):5E+03 Pu(VI):2E+03	Pu(IV):3E+04 Pu(VI):3E+04	Pu(IV):3E+04 Pu(VI):3E+04	Pu(IV):3E+02 Pu(VI):5E+01
Cs	-	2E+00	2E+01	-
Sr	1E+02	3E+01	1E+02	1E+00

In case of penetrating α -contamination inside the concrete, penetration depth can be conservatively assessed by measuring γ -rays from the fission products such as Cs (Cs-137), which have penetrated very deep into the concrete.

*1 Kinoshita et al. Estimation of penetration distribution of each element in concrete penetrated with various nuclides, Journal of Japanese Society of Radiation Safety Management, Vol. 15, No. 1, 2016 *2 Michel Ochs et al, "Radionuclide and Metal Sorption on Cement and Concrete" (2015)

91

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation -Study on penetrating α -contamination-

Details of investigation of measurement technologies

Overview of investigation of technologies

Sampling analysis is common, but there are issues such as high cost and time, and difficulty in showing the representativeness of the sample. The following methods were investigated as alternative technologies for on-site measurement (In Situ measurement).

(1) Estimating penetration depth by measuring γ -rays released from 235U and attendant γ -nuclides

· Method using scattered ray / direct ray ratio

→If penetration is deeper, the direct rays tend to attenuate, and the scattering component increases. Penetration depth is calculated from the ratio of direct ray and Compton scattering.

· Method using multiple gamma ray ratios

 \rightarrow Ratio of each γ -ray depends upon the penetration depth due to difference in permeability rate of γ -rays (or K-X rays) with different energies.

2 Boring measurement

→ Boring at representative points to measure (insert a detector) the distribution inside the boring hole

• Viewpoints on applicability assessment of investigated technologies

- > Common to destructive measurement and non-destructive measurement
 - As there is a possibility of using multiple technologies according to the operating procedures, individual technologies were assessed qualitatively without narrowing down to a single technology.
 - The technologies applied in the decommissioning of nuclear facilities were mainly investigated. When applying the technology to 1F (~ several mSv/h), re-designing the shielding member, collimator, etc. was considered as a prerequisite (issue).
 - Penetration depth was not only calculated for the penetration of the sound concrete surfaces, but also for presumed cracks and buried objects (pipes, etc), and a width from surface to 20 cm or more was assumed.
- Destructive measurement
 - Issues such as representativeness of sampling points and cross-contamination of the drilled surfaces, at the time of application of conventional methods, were also assessed.
- Non-destructive measurement
 - Mainly, penetrating contamination measurement technologies for Cs-137 were targeted based on the assessment results of penetration behavior.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation

-Study on penetrating a-contamination-

Comparison of investigated technologies

 Penetrating contamination measurement of a wide area including concrete floors, ceilings, and walls, etc. after removal of dismantled equipment from inside the building, was assumed.

• Domestic*1, and overseas technologies focusing on Russia for the non-destructive and destructive measurement technologies were investigated.

The method using the scattered ray / direct ray ratio is the most applicable non-destructive method.

The destructive method can be used as a supplementary method in combination with deep penetration and sampling analysis.

分類	手法	α核種評価	測定対象	測定手順	測定原理	装置例	検出器・装置構成例	適用事例	1F適用課題等	適用性	
非破壊测定	CORAD法 《散乱線/直接線比率》	間接	対象物内部で敵乱し たヶ線と、対象物内 部からの直接ヶ線。	コリメートしたア線 検出器を対象物に向 けて配置し、スペク トル測定する。	散乱領域の計数率と ビーク計数率の比率 から浸透深さを算出	CORAD-M(LaBr3)	 r 線検出器 (測定対象で異なる) ・Nai(Ti)、Csi、 ・HPGe、LaBr3 ・コリメータ ・波高分析装置 ・架台(三脚等) ・PC+専用ソフト 	・ロシア国内 汚染調査 廃止措置 ・仏EDF及びCEAでも 評価	度及び、浸透度(拡 散)の比率。	コンクリートへの実績 があり(表面〜数10cm の深さ)、複数の検出 器にも対応しているの で、Cs-137を対象とす れば適用性有り。(技 術としては成熟) 〇	
	数乱線/直接線比率 γ線/β線比率法	間接	対象物内部からの直 接・散乱 r線と、対 象物表面から放出さ れる β線。	コリメートした 7線 検出器と、薄型の β 線検出器を対象物に 密着し、 β線及び 7 線スペクトルを測定 する。	r線の散乱領域の計 教率とピーク計散率 の比率から浸透深さ を算出し、β線とr 線スペクトルの比較 で、表面、内面、浸 透を判定する。	A	・ホスイッチ型 <i>B / Y 線</i> 検出器 (NaI/PLS検出器)	・Nupec確証試験 (H4~15年度)	 γ核種とα核種の濃 度及び、浸透度(拡 散)の比率。 対象面への密着が必要となる。 	 密着型で感度は良好。 機器撤去後で、数cmの 範囲であれば確証試験 での実績があり、C8- 137を対象とすれば適 用性有り。 O 	
	複数γ線比率法	間接	対象物内部からの異 なる複数のエネル ギーの直接ヶ線(ま たは蛍光X線)。	コリメートした7線 検出器を対象物に向 けて配置し、スペク トル測定する。	γ線のエネルギー毎 の透過率の違いか ら、浸透深さを算出		・1500Sシステム ・HPGe ・コリメータ ・架台 (キャンペラ製)	・SCK-CEN BR3廃止措置 (ベルギー)	 ・ γ核種とα核種の濃 度及び、浸透度(拡 散)の比率。 ・Cs-137のX線エネル ギーが小さく、深い浸 透には対応できない。 ・Ba同位体をもつ材質 はに適用できない。 	下にも適用できり、制	*
	螢光×線法	直接	γ線で励起された∪ またはΡuから放出 される蛍光×線。	外部線源または、同 時に存在する0s-137 等の2線で励起しKβ -X線を測定する。	X線のエネルギー毎の 透過率の違いから、 浸透菜さを算出	UWTR>Z74	・CdZnTI検出器 ・ビデオカメラ ・遠へい/コリメータ ・MCA/PC	・ロシア WR炉ブール (ただし、濃度は、 185keYy WRによる。 また、浸透は評価し ていない。)	・ブール内の使用済燃 料が対象、励起線源の 強度、精度等に依存す るため定量性に課題。 ・エネルギーが小さい ので、深い浸透には対 応できない。	使用済燃料を対象とし た手法で感度が不足し ており、エネルギーも 小さいため、深い浸透 には適用できない。 (将来のデブリ探査に は適用可能性あり) ×	
破壊測定	ポーリング孔挿入法	直接/間接	ポーリング孔内表面 から放出されるα線 またはβ線、Y線。	ボーリングれにコリ メートした検出器を 挿入し、直接表面を 走査測定する。	予め標準に を な たた 制 の 計 数 準 校 微 出 常 帯 位 位 の 計 数 本 を た た 制 の 計 数 本 を う 宗 市 た た 制 数 本 を う た た 制 数 本 を う た た 制 数 の 計 数 本 う た た 方 二 の 計 数 本 こ う 方 市 支 の 計 数 本 こ 、 う 市 で の 計 数 本 こ 、 う 市 で の 計 数 本 こ 、 う 市 で の 計 数 本 こ 、 、 う 市 で 気 二 の 計 数 本 こ 、 、 う 市 て 数 か 正 ま で た 、 、 、 の 計 数 本 こ 、 、 あ 市 二 、 ま で た に 、 表 西 に 、 表 一 た に 、 表 一 に 、 表 一 た に 、 表 一 に 、 表 一 た に 表 唐 に 、 決 一 定 ま た に 、 表 度 に 一 、 み 本 た に 、 、 本 を 二 、 本 本 を 、 、 本 を 、 本 を こ 、 、 本 を こ 、 、 本 を こ 、 、 本 を こ 、 、 本 を こ の 一 、 本 本 一 、 、 本 一 、 、 本 一 で る 。 の っ の っ の っ の っ の っ の っ の っ の っ の っ の っ の っ っ っ っ っ っ っ っ っ っ っ っ っ	Q ホスイッチ型 ホスイッチ型 ア スペクトル型(ロシア)	 Nupec CsI検出器(γ)+ PLS検出器(β) ホスイッチ型 ロシア CsI検出器 コリメータ α線直接計測 ZnS検出器 	・Nupec確証試験 測定ステップ1mm ・ロシア 空間分解能5cm	クロスコンタミ。	挿入測定自体は従来法 である。サンブリング の代表性と断面のクロ スコンタミの可能性が 常にあり対策(開発) が必要となる。 △	O:Applicable ∆: Controlled ×: Not applicab 93

*1 Mainly based on investigation report related to confirmatory testing for decommissioning facilities of commercial nuclear power reactors, and contamination penetration measurement technology (1995 to 2003)

*2 In accordance with the investigation report of penetrating contamination measurement technology requested to Russia.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation

 Study on penetrating α-contamination Identification of issues in on-site application

<Technical Issues>

Indirect measurement using Cs-137

During actual application, in order to prove the validity of the estimated value of the penetration depth of an α -nuclide, not only is the data on penetration behaviour for every nuclide obtained from literature necessary, but many measurement values are also required for each concrete condition for the ratio of concentration of α -nuclides and γ -nuclides such as Cs-137 and the ratio of degree of penetration.

Development of devices suitable to the environment specific to 1F

The devices (software and hardware) need to be changed in accordance with the ratio of concentration of α -nuclides and γ -nuclides such as Cs-137, and the environmental dose rate, as well as the structure and dimensions of the measurement location.

<lssues in application>

Establishing specific operation methods

The environmental conditions at the time of measurement (mainly during the dismantlement of buildings) may differ significantly than the current assumptions and it is necessary to select the detector and study the structure in accordance with the conditions.

Moreover, it is necessary to study not only the non-destructive method, but also the detailed procedures related to distinguishing between the use of sampling analysis and destructive methods such as boring.

(3) Development of Contamination Evaluation Technology for Solid Waste Segregation - Conclusion -

• Study of surface α-contamination

- A detector was prototyped in accordance with the device requirement specifications summarized from the study results of the scope of on-site application.
- Tests assuming on-site environment were conducted and the conditions to obtain the target lower limit of detection (0.4 Bq/cm2, 4 Bq/cm2, and 40 Bq/cm2) were assessed.
- The reassessment of the impact of the shapes of measurement targets on on-site application was identified as a future issue.

Study on penetrating α-contamination

- On investigating the penetration behavior of α -nuclides, the technology that can assess the penetration depth of α -nuclides was investigated.
- The on-site applicability of the measurement technology was assessed and prospective technologies were shortlisted for non-destructive and destructive methods.
- For the on-site application of the investigation technology, the changes in devices (modification of models and software due to geometrical changes) in accordance with the unique environment at 1F and collection of data on the penetrating nuclide composition, were identified as issues.

4. Research on Disposal

Implementation Details

- (1) Study of Disposal Concept and Safety Evaluation Methods for Solid Waste
- (2) Measures for Materials with Impact on Disposal
- (3) Clarification Items Having Impacts on Safety Evaluation of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal

(1) Study of Disposal Concept and Safety Evaluation Methods for Solid Waste -Implementation Plan and Goal Achievement Index-

-v

Implementation Plan

 2017 • The disposal concept and safety assessment methods are investigated from multiple points of view such as technical aspects and institutional aspects identifying representative examples from the waste disposal facilities of other countries. Based on the investigation results, the FY2018 investigation plan (scope of investigation and investigation methods) is developed.

 Presentation of FY2018 investigation plan (scope of investigation and investigation methods).

Goal Achievement Index

2018 • The disposal concept and safety assessment methods are investigated from multiple points of view such as technical aspects and institutional aspects for the waste disposal facilities of other countries, based on the FY2017 plan. Safe and reasonable disposal concept and safety assessment methods are studied based on the results of investigation and considering the characteristics of 1F solid waste.

• Presentation of a safe and reasonable disposal concept and a proposal for safety assessment methods considering the characteristics of 1F solid waste.

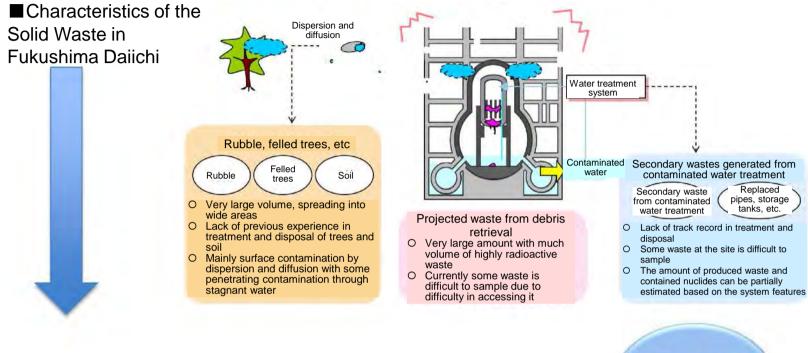
□ Overview of Results

- A list of reference cases to be noted at overseas disposal facilities was created and their applicability to 1F solid waste and related issues were organized.
- Methods to study the disposal concept considering characteristics of waste were organized (Figure 1).
- Case studies of multiple disposal concept were implemented by this method and it was confirmed that it is possible to study the policy of waste treatment and disposal in accordance with the characteristics of the waste.

Future Plan

 In future, image of waste needs to be clearly specified and multiple disposal methods must be established for each 1F waste and safety assessment methods must be established for each disposal method.

Figure 1. Process of study of disposal concept considering characteristics of waste


(1) Study of Disposal Concept and Safety Evaluation Methods for Solid Waste

-Implementation Details-

a. Results of investigation of overseas reference cases	P100 - P111
b. Study process of disposal concept considering waste characteristics	P112 - P118
c. Case studies of multiple disposal concept	P119 - P133
d. Summary of Results	P134

a. Results of investigation of overseas reference cases -Identifying characteristics of Solid Waste in Fukushima Daiichi-

Needs for safe and reasonable solid waste disposal, considering the characteristics of waste

Investigations and studies were conducted from the three perspectives shown on the right considering the characteristics of waste

a. Results of investigation of overseas reference cases -Overview of investigation of overseas reference cases-

Research was conducted on the low-level waste disposal facilities outside Japan, which are available for various kinds of wastes and for which detailed data has been published.

LLWR*1 Disposal facility (UK)

Contents of research

①Brief survey on disposal facilities ⁽²⁾Research on waste characteristics ③Research on waste pretreatment (4) Research on waste containers

SFR*2 Disposal facility (Sweden) WCS*3 Disposal facility (USA, Texas) *1: Low Level Waste Repository *2: Final Repository for Short-lived Radioactive Waste *3: Waste Control Specialists

> (5) Research on waste treatment 6 Research on waste storage (7) Research on acceptability of waste at disposal facilities (8) Research on disposal concepts

OSurvey on safety assessment methods

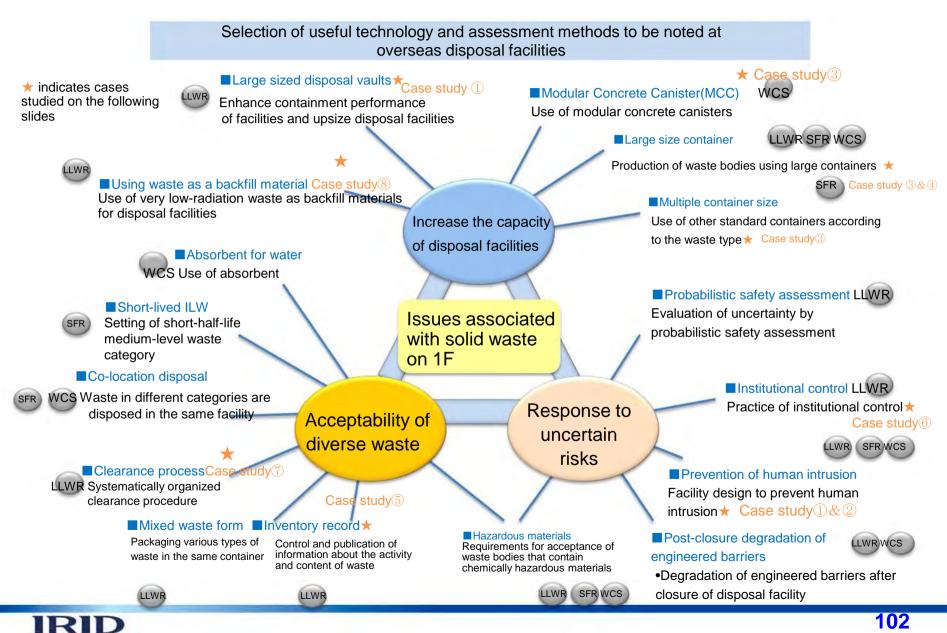
10 Research on safety cases

(1) Research on process of optimization of economic performance

> Systematic research was conducted.

Study on research results

Comparison with previous cases in Japan


·Importance determined based on needs of 1F waste

Listing of important reference cases (LLWR and SFR: 25 cases, WCS: 16 cases)

a. Results of investigation of overseas reference cases

- Focused important reference cases and examples of those reflected to 1F needs -

Case study① a. Results of investigation of overseas reference cases -Disposal Facility with Cap System- (UK LLWR) -

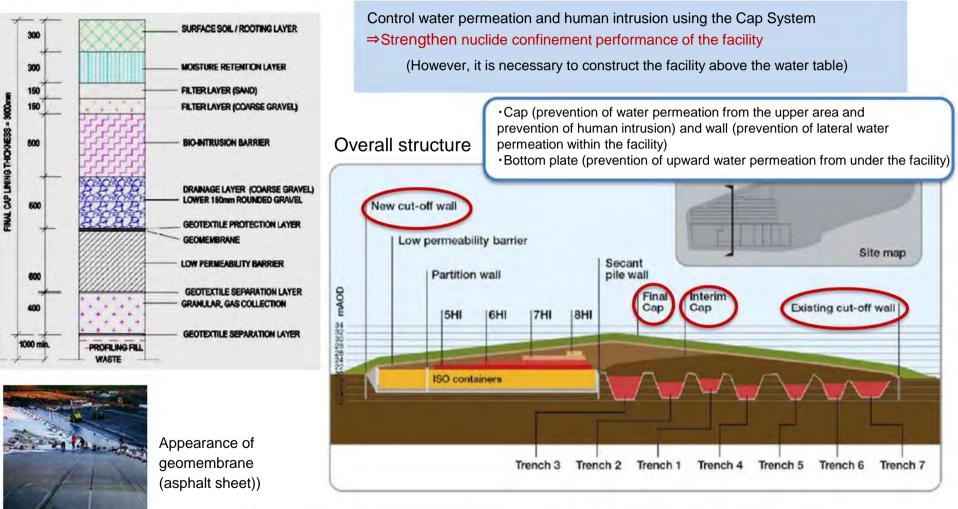


Figure 4.7: The preliminary design of the final cap for the LLWR at closure.

*1: LLWR, The2011ESC: Engineering Design, LLWR/ESC/R(11)10020, May 2011.

■Case study② a. Results of investigation of overseas reference cases

-Structure of Facility Controlling Human Intrusion-

LLWR in UK

• A cap with a bio-intrusion barrier (Bio-intrusion Layer) built on a bed of round rocks with a diameter of 600 mm is employed as a measure to enhance protection against human intrusion by excavation

⇒Improves protection against human intrusion based on the regulatory requirements

WCS Texas in USA

Class C waste is buried at a depth of 5 m or more from the surface to protect unintended intruders according to the Texas State Code.
The modular concrete canister (MCC) used at WCS has a structural strength that prevents human intrusion to Class C waste.

⇒Inhibits human intrusion for 300 years

SFR in Sweden

The coastal submarine installation prevents human intrusion.

- Assuming an uplift over a 1,000-year period, the disposal facility was built at a depth of 60 m from the seafloor.
 - \Rightarrow Inhibits human intrusion for 1000 years

a. Results of investigation of overseas reference cases ■ Case study ③ - Large-size Containers -

Effective utilization of limited disposal facility space by the use of large disposal containers

Item	LLWR in UK	SFR in Sweden	WCS Texas in USA
Appearance	ISO Container or half height ISO (HHISO) container	 Orrente tank. Sol container 	Modular concrete canisters (MCC)
Dimensions	Height 1.32 m x Width 2.5 m x Length 6.06 m (HHISO)	Various dimensions	Inner diameter 2 m x inner height 2.8m
Strength	9-level stack is assumed	Up to 42-level stack is assumed	34.5 MPa (up to 6-level stack)
Solidification agent	Superplasticizer-containing PFA + Portland cement	Asphalt Concrete	High-strength grout (compressive strength after 28 days : 2,000 psi)
Notes	A HHISO container is used more often because of its handleability.	Containers are put in a silo and continuously grouted with cement.	A layer of fluid sand or soil is added in between every stacked MCC.

Case study ④ a. Results of investigation of overseas reference cases

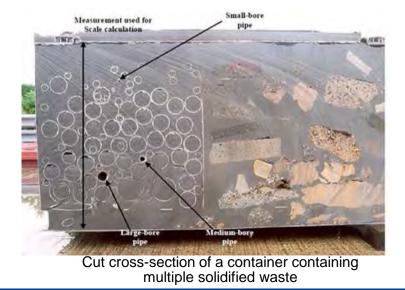
- Solidification of Large Containers (LLWR in UK) -

<<Characteristics of large container solidification>>

• Use of specially formulated, high fluidity, cement solidification material

• In order to inject cement in every corner of the container, it is necessary to tilt the container and inject the cement through multiple injection holes.

Cutting a solidified container


Cut cross-section of a container containing a compressed drum

•Multiple wastes with different properties are mixed and form a waste body, but the inventory of each waste is managed by UKRWI (next slide) from the initial stage of generation, and the inventory of a mixed waste body can also be known.

Solidification in a large container requires the following technology and method •Technology to realize the solidification of waste in the container

Method to determine inventory of waste body

a. Results of investigation of overseas reference cases

- Inventory Management System (UK: UKRWI*1) -

Inventory of all waste streams of every power station can be traced.

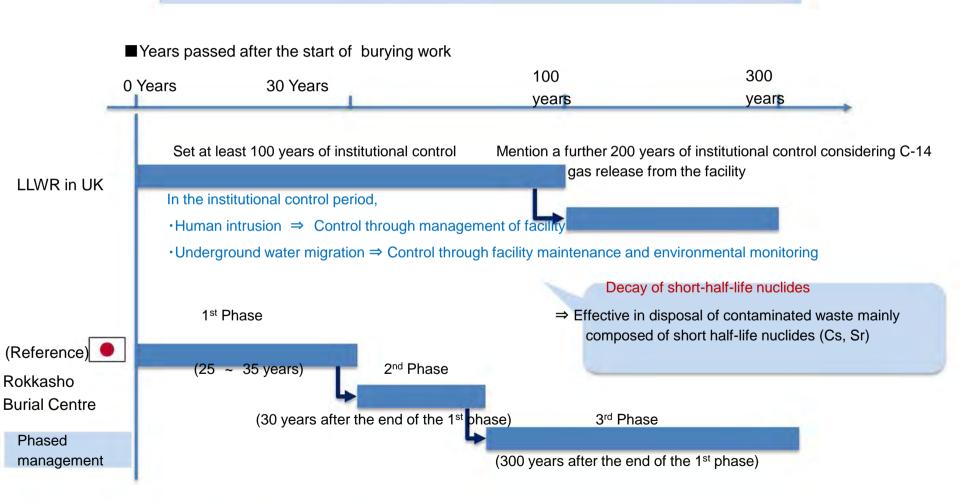
•Waste generated over the long term is estimated, and the fluctuation margin, nuclides, and chemical mass of the generated waste is also managed in an integrated manner.

●As the inventory is clarified, mixed wastes are easy to dispose.

<< Projected waste generation in UK>>

181	Volume (m ³)			
Waste category	Reported at 1 April 2016	Estimated future arisings	Lifetime Total	
HLW	1,960	-820	1,150	
ILW	99,000	191,000	290,000	
LLW	30,100	1,320,000	1,350,000	
VLLW	935	2,860,000	2,860,000	
Total	132,000	4,360,000	4,490,000	

*1: UK Radioactive Waste Inventory



The System can be used for long-term waste management until the time of disposal

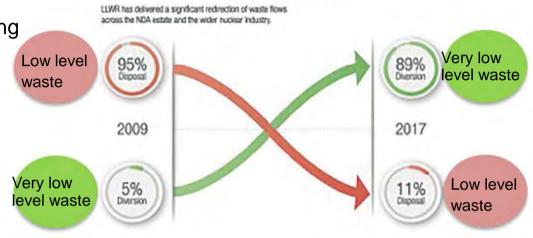
⇒ However, it must be applicable to the actual condition of the1F wastes.

Case study 6 a. Results of investigation of overseas reference cases -Institutional Control (UK LLWR)-

Decay of short-half-life nuclides by setting the time period for "institutional control"

Case study ⑦ a. Results of investigation of overseas reference cases -Waste disposal strategy of UK-

<u>Issues</u>


Huge amounts of low-level waste will be generated in the UK with decommissioning

- National strategy
- Application of waste hierarchy
- Increase in reuse and recycling
- Expansion of disposal at VLLW disposal facility

[Concept of waste hierarchy]

Disposal to Diversion 2009-2017

■ Waste prevention: Preventing and reducing waste generation in the planning phase

Minimization of waste: Minimizing amount and radioactivity (Segregation, separation, decontamination, characterization, etc.)

■ Reuse of waste: Transfer of assets, and use of soil and rubble as backfill material

Recycling: Recycling of metal, concrete and rubble (Decontamination, melting and crushing)

IRID

Case study ⑧ a. Results of investigation of overseas reference cases -Using Very Low Level Waste as Backfill Material (LLWR in UK)-

The possibility of using some of the very low level waste as a filling material between containers is under study.

•Cement and aggregates (sand and gravel) are used as filling material for containers at the LLWR disposal facility.

•The method of using the disposal facility effectively by reusing sand and concrete fragments in the very low level waste, in these aggregates, was studied.

It was concluded that the use of abovementioned very low level waste as filling material in the containers would affect the current waste acceptance standards and would not be the BAT*.

●As an alternative, a proposal for the use of the VLLW as a filling material between containers and as a backfill material for the cap layer, is being considered.

Containers of waste bodies placed at the LLWR disposal facility

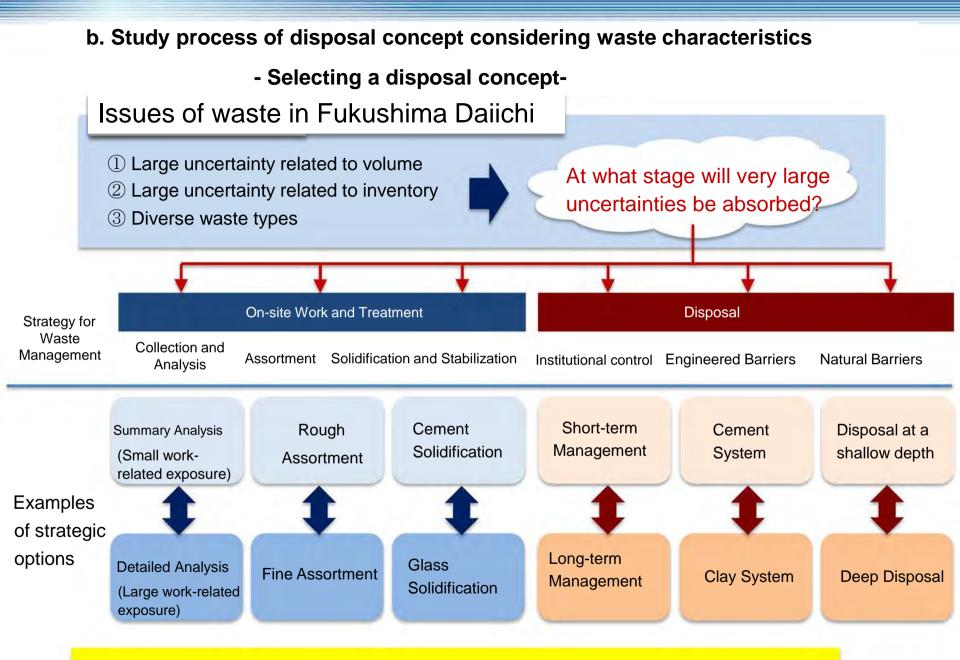
*BAT: Best Available Technique

a. Results of investigation of overseas reference cases

-Applicability of important overseas reference cases to waste disposal in Fukushima Daiichi -

Important overseas references cases can be applied to waste disposal in Fukushima Daiichi

 \Rightarrow Incorporated in the study of disposal concept of 1F waste



Various categories influence the disposal concept

No.	lssues to be dealt with	Important reference cases	Past domestic results	Applicability to 1F waste disposal	Category
1		Facility structure with a Cap System	Not implemented in Japan (Not effective below the water table)	Possible (Depends on the location)	
2		Facility structure to control human intrusion	Not implemented in Japan	Possible (Technical study required)	Disposal facilities
3	la ana ani ana Alea	Use of very low level waste as a backfill material	Not implemented in Japan	Possible (Evaluation required)	
4	Increasing the	Large size disposal containers	L1 disposal container	Possible	
5	capacity of disposal facilities	Other types of standard containers	200 liter drum, L1 disposal container, etc.	Possible	Disposal
6	disposal lacindes	Concrete containers	Not implemented in Japan	Possible (Technical study required)	containers
7	UK waste disposal strategy		Not implemented in Japan	Possible (Technical study required)	Pre-treatment
8		Large size container solidification	Not implemented in Japan	Possible (Technical study required)	Solidification
9		Mixed waste solidification	Not implemented in Japan	Possible (Change the inventory management)	Solidilication
10	Acceptability of diverse waste	Settings of short-half-life medium-level waste category	Not implemented in Japan	Possible (Technical study required)	
11		Inventory management system	Not implemented in Japan	Possible (Change the inventory management)	Control and management
12		Institutional control	Rokkasho low level waste burial centre, etc.	Applied	
13	Responding to	Acceptance of waste containing materials with impact	HLW disposal, TRU disposal, LLW disposal	Possible (Partially applied)	
14	uncertain risks	Evaluation of long-term degradation of engineered barriers	HLW disposal, TRU disposal, LLW disposal	Applied	Evaluation method
15		Probabilistic safety assessment	Research cases available	Possible (Technical study required)	

111

⇒Utilized in the "Waste Management Strategy" that provides an overview of the entire process from treatment to disposal

-Study process related to disposal concept considering waste characteristics-

Development of a study process that can extensively evaluate various options from treatment to disposal in accordance with the characteristics of waste

Waste characterization

[Characteristics] ·Large amount of waste

- ·Wide variety of waste
- Large uncertainties

Study of disposal concept

- Disposal depth
- Facility structure
- Environmental conditions
- etc.

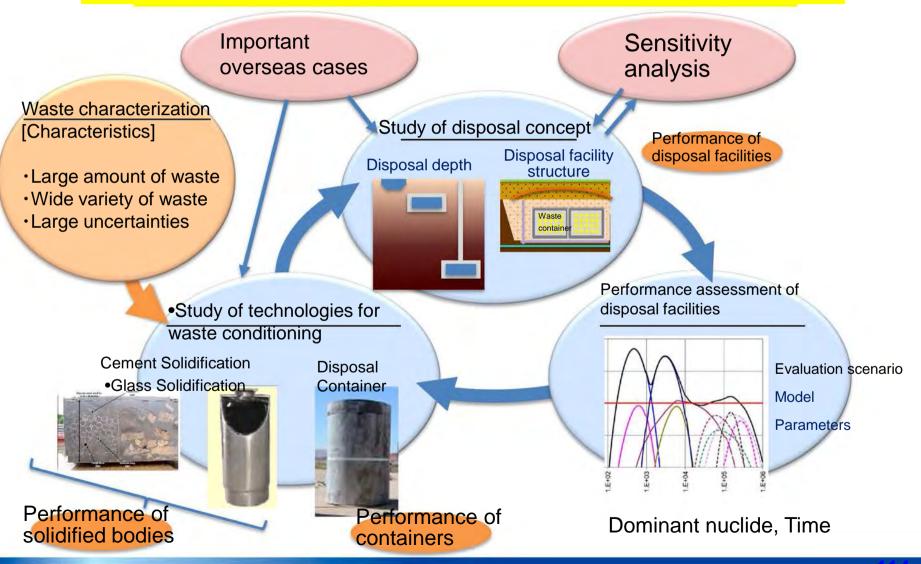
Study of technologies for waste conditioning

- Measurement / assortment
- Solidification treatment
- ·Disposal container etc.

Performance assessment of disposal facilities

- Evaluation scenario
- Evaluation model
- ·Evaluation parameters etc.

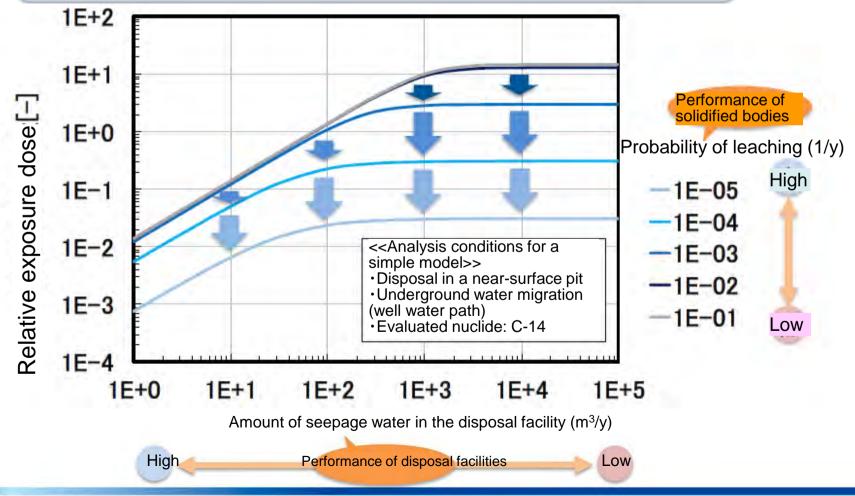
Establishment of the study process methodology was confirmed this time.


 \Rightarrow Case studies were implemented for typical disposal concept that have been proposed.

113 Cinternational Research Inst

- Example of options for the study of disposal concept-

Implementing sensitivity analysis beforehand to conduct effective case studies

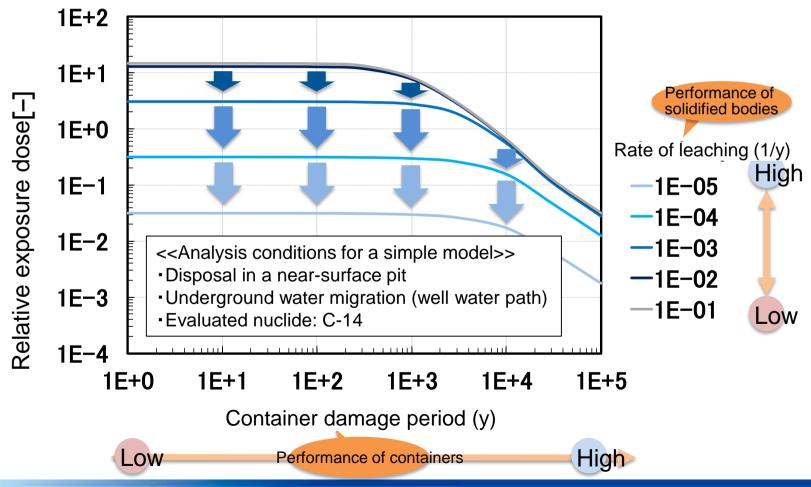


TT4

-Example of Sensitivity Analysis: Performance of solidified materials-

Effect of solidification performance changes depending upon performance of disposal facilities

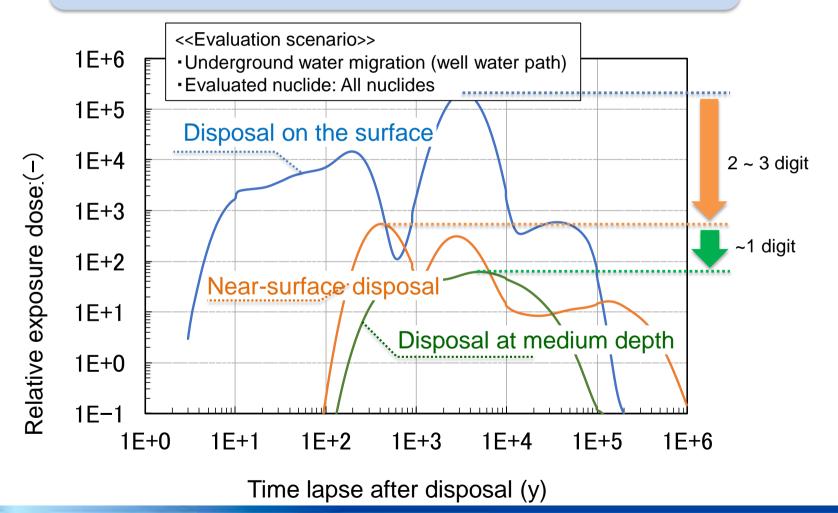
 \Rightarrow Performance of solidified bodies is required to be in accordance with the concept for the disposal facility



-Example of Sensitivity Analysis: Performance of containers-

Effectiveness of container performance changes depending upon the disposal facility and solidification performance as well.

 \Rightarrow In this example, the process is seen to be effective in maintaining the integrity of the container for 1000 years or more



-Example of Sensitivity Analysis: Performance of disposal facilities-

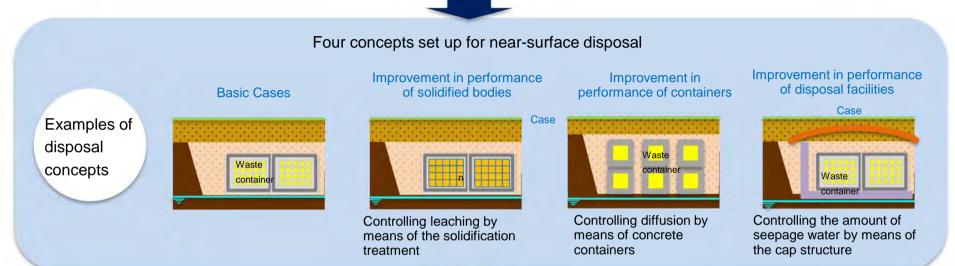
Significant dose reduction effect can be achieved by increasing the disposal depth

⇒ Reducing the burden of waste segregation

-Summary of Sensitivity Analysis-

Understanding the main performance factors and their effects and limitations to be considered during treatment and disposal

 \Rightarrow Incorporate into case study settings to confirm the effectiveness of the study process


Item	Performance of solidified bodies	Performance of containers	Performance of disposal facilities
Short-half-life nuclides such as Co-60, Sr-90, Cs-137, Ni- 63	migration scenario.	n, housing, agriculture, etc.) is don	
Long-half-life low- sorption performance nuclides such as C-14, CI-36, Se-79, Tc-99, I- 129	0~2 digit*1 •Controlling the probability of leaching •The effect is determined in combination with the facility, container, and natural barrier performance	0~1 digit*1 • Container confinement • Dispersion during confinement period and diffusion inside container • The effect is determined in combination with the facility, solidification, and natural barrier performance	0~2 digit*1 • Controlling the quantity of water permeation •Diffusion barrier •The effect is determined in combination with the solidification, container, and natural barrier performance
Long-half-life sorption performance nuclides such as Ni-59, Nb-94, Sn-126, Cs-135, TRU	<0~2 digit*1 Controlling the probability of leaching The effect is difficult to detect as the effect of sorption and natural barrier is significant 	<0~1 digit*1 Container confinement Dispersion during confinement period Diffusion inside container The effect is difficult to detect as the effect of sorption and natural barrier is significant 	<0~2 digit*1 Controlling the quantity of water permeation Diffusion barrier The effect is difficult to detect as the effect of sorption and natural barrier is significant

*1: Criterion for reduced relative exposure dose

-Purpose of case studies-

Presentation of primary proposals for disposal concept and study of methodologies considering the characteristics of waste

How are the effects of the treatment or disposal concept evaluated?

- Evaluation of the exposure dose (human intrusion / underground water migration scenario)
- Evaluation of the amount of waste for each disposal class
- Identification of important nuclides and important scenarios
- How to provide a feedback on the results obtained?
- Feedback for treatment and disposal concept(use of important overseas reference cases
- Feedback for waste characterization (important nuclides, important waste)
- Feedback for treatment technologies (waste conditioning technologies)

Reflection in the Waste Management Strategy

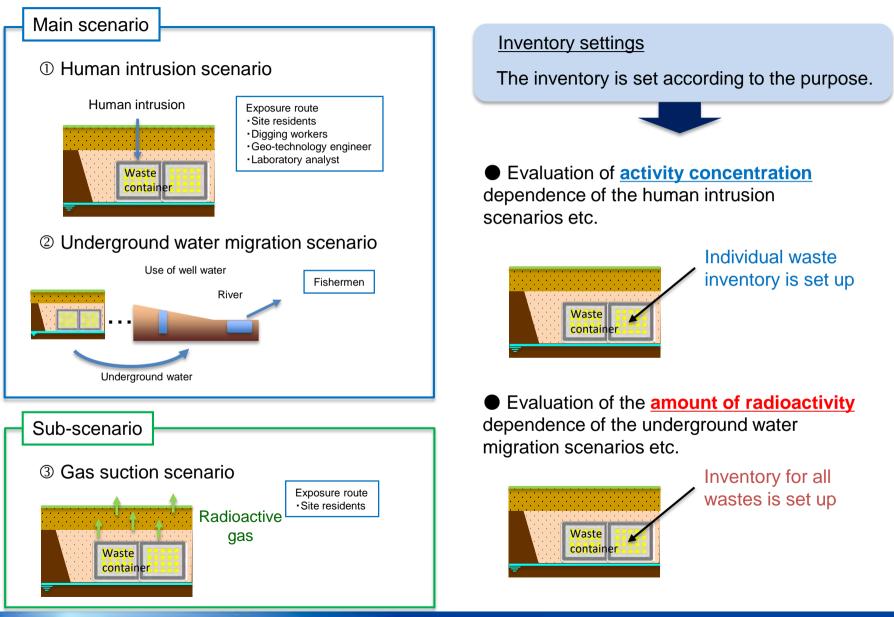
RID

c. Case studies of multiple disposal concepts - Features of disposal concept for which case studies were conducted-

Four near-surface disposal concepts were set up based on the results obtained from sensitivity analysis

	Items	Reference case	Improvement in performance of solidified bodies	Improvement in performance of containers	Improvement in performance of disposal facilities
C	Conceptual diagram	Waste container	Waste container	Waste container	Waste container
	Disposal facilities	Pit structures	Pit structures	Pit structures	Pit structures + Cap structures
Features	Disposal containers			Diffusion of the concrete container wall is assumed	Not assumed
0,	Presence of solidification	Not assumed	Assumed leaching rate of solidified bodies is 10 ⁻⁴ [1/y]	Not assumed	Not assumed

-Analytical conditions for the case studies-

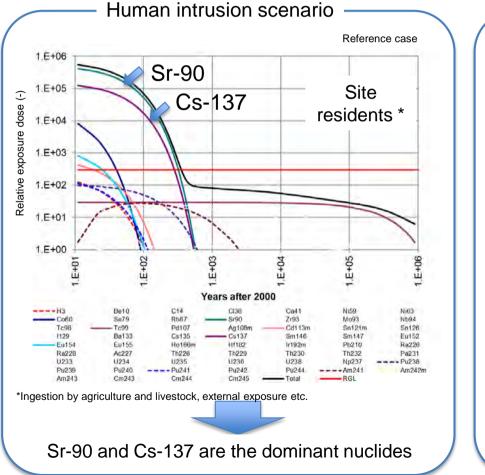

• The main conditions for dose evaluation are as follows:

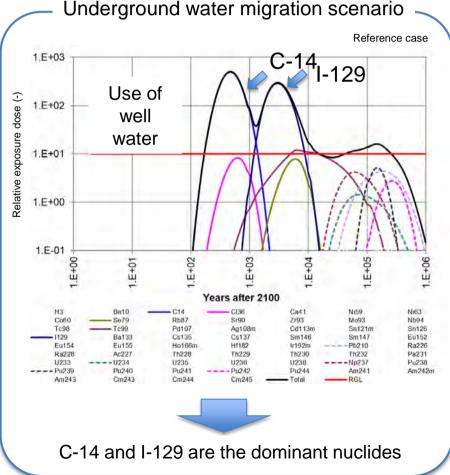
IRID

Set items	Set values
 ① Settings for the waste amount and inventory ⇒ 27 kinds of wastes are set 	Use of analytical estimates value of nuclide concentrations in accident waste* Although these values are obtained from conservative evaluation of uncertainties (there are some wastes with a nuclide concentration that is several digits higher) by referring to the information as of FY2016, note that these will be continuously updated in the future as well according to the improvements in the analysis data on rubble or contaminated water, etc.
 ② Settings for the waste containers (disposal containers) (Only for the cases of improvement in performance of containers) ⇒ Thickness and diffusion coefficient settings 	A concrete container is assumed. The nuclides migrate through the container wall by diffusion. The diffusion coefficient is 1E-12 (m^2/s), and the thickness of the container is 15 cm.
 ③ Settings for performance of waste bodies (Only for the cases of improvement in performance of solidified bodies) ⇒ Settings for the leaching probability 	The leaching probability is set to 10^{-4} (1/y) on the basis of the sensitivity analysis results.
④ Settings for the environmental conditions for disposal ⇒ Settings of flow velocity and migration distance of the underground water	For this study, it has been set to surface (flow velocity 10 m/y and migration distance 100 m) and near surface / medium depth (flow velocity 0.1 m/y and migration distance 100 m)

121

- Evaluation scenarios used for the case studies -


■Case Study①


c. Case studies of multiple disposal concepts

- Study of the dominant nuclides -

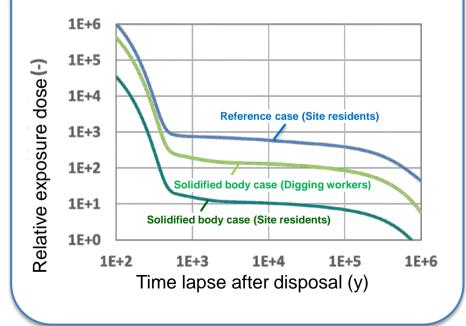
- In the human intrusion scenario, the short half-life nuclides Sr-90 and Cs-137 are the dominant nuclides
- In the underground water migration scenario, the long half-life nuclides C-14 and I-129 are the dominant nuclides

Measures need to be undertaken for each of these.

124

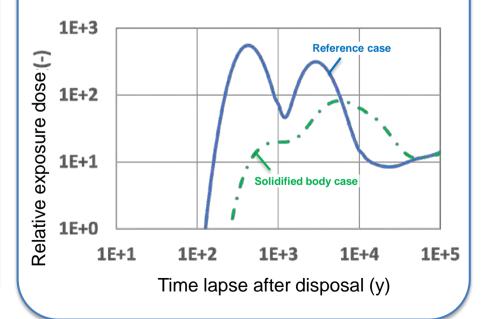
■Case Study2

c. Case studies of multiple disposal concepts


- Effects of the performance of the solidified bodies -

• Dose decreased in both the scenarios by improving the performance of the solidified bodies.

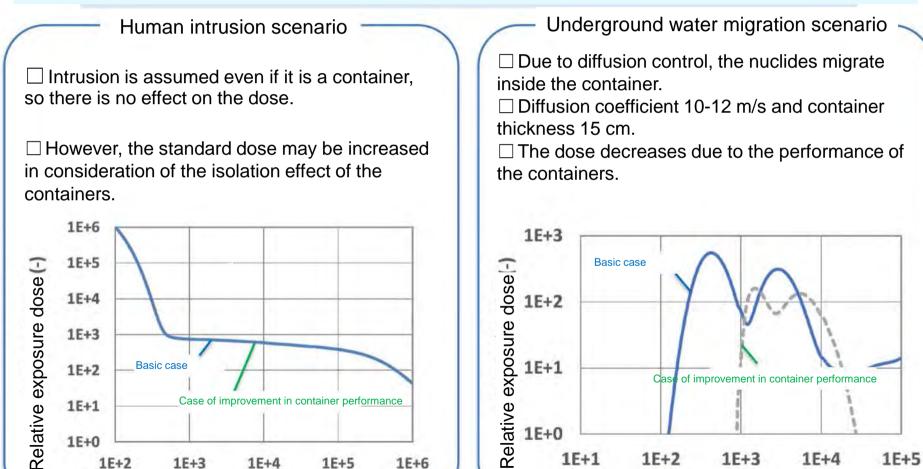
 \Rightarrow The effects of solidification and pre-treatment etc. can also be evaluated.


Human intrusion scenario

 In this case, it is assumed that during the production of the solidified body, C-14 vaporizes from the solidified body because of the high temperature heating.

Underground water migration scenario

- In this case, vaporization of C-14 is not considered and only the leaching rate (10⁻⁴ 1/y) of the solidified body is considered.
- The dose decreases due to the performance of the solidified body.



Case Study 3

c. Case studies of multiple disposal concepts

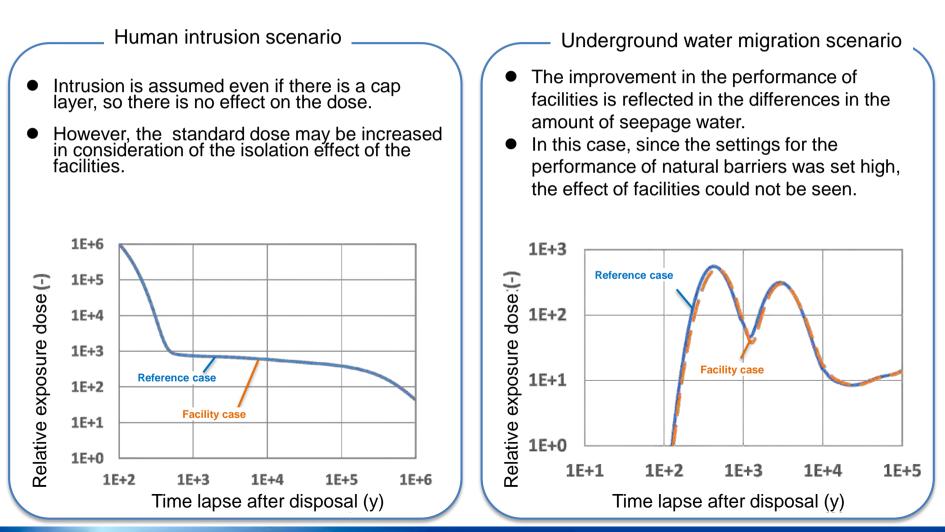
- Effects of performance of containers -

• Dose decreased in the underground water migration scenario due to improvement in the performance of the containers \Rightarrow In the human intrusion scenario, although the dose is the same, intrusion could be controlled.

Time lapse after disposal (y)

125

Time lapse after disposal (y)

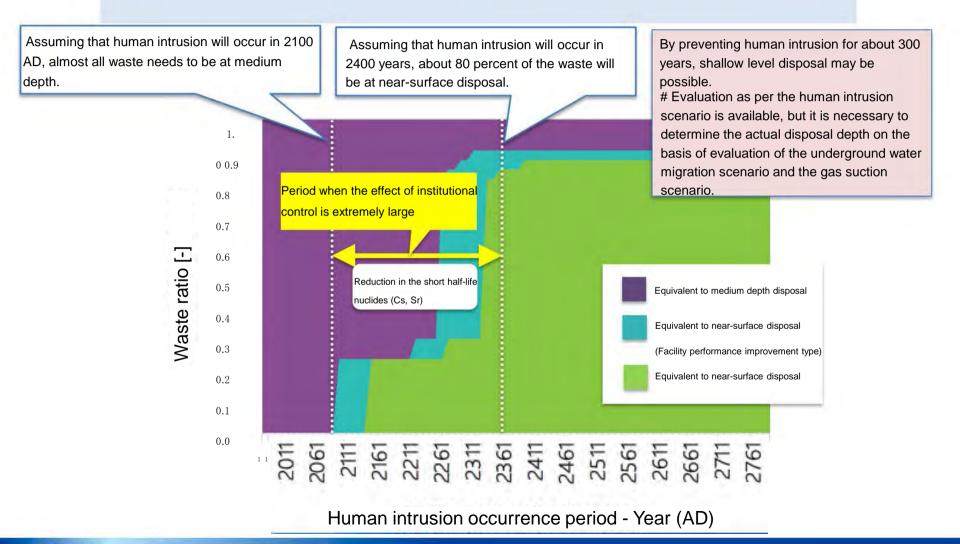

Case Study (4)

c. Case studies of multiple disposal concepts

- Effects of performance of facilities -

Effectiveness of facility performance revealed in comparison with performance of natural barriers

 \Rightarrow A study of the disposal facilities in accordance with the assumed natural barrier conditions is important.

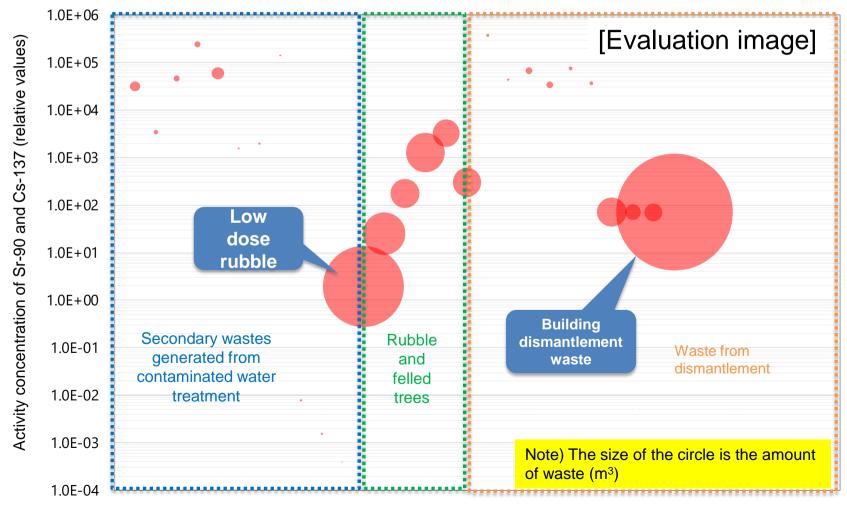


127

■ Case Study ⑤ **C. Case studies of multiple disposal concepts**

- Relation between disposal classification and the institutional control period -

Big change in the ratio of the waste classification due to the effective use of institutional control.
 ⇒ The maximum effect is in the decrease of dose in the human intrusion scenario.

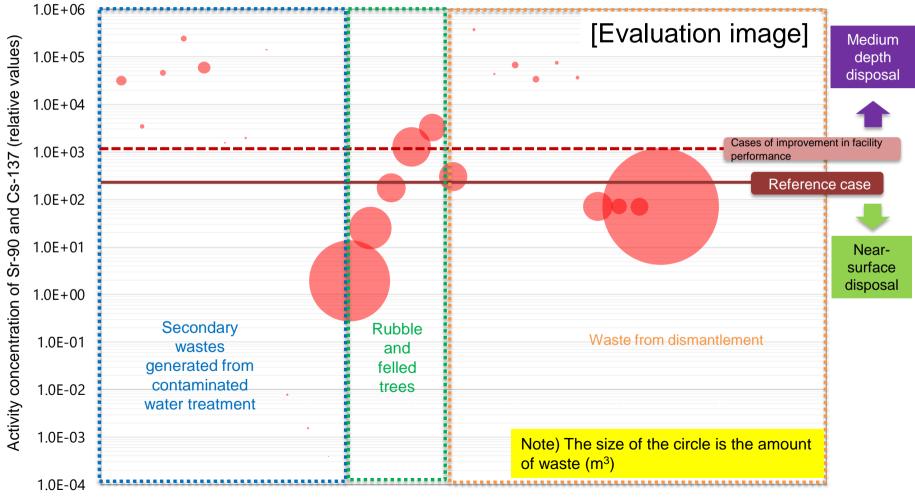


Case Study 6

c. Case studies of multiple disposal concepts

- Dose and amount of waste -

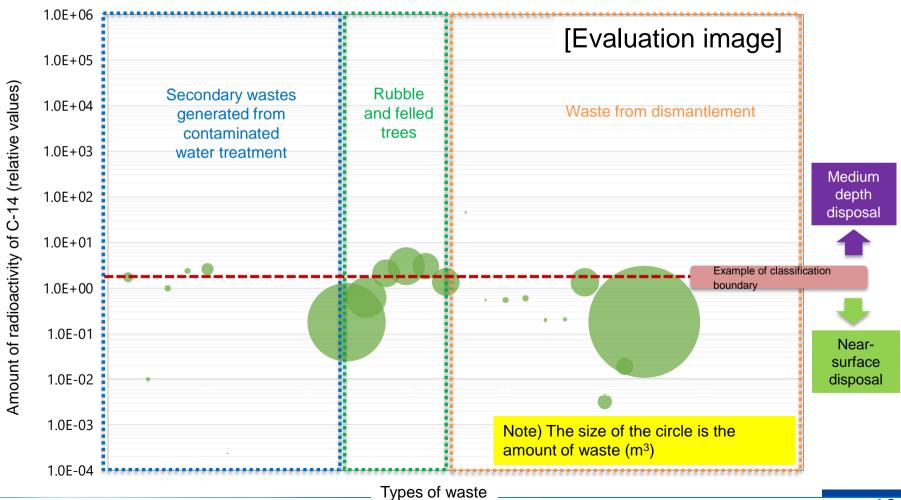
- The high-dose waste tends to be comparatively low in amount.
- The "building dismantlement waste" that has a high dose and exists in large amounts is especially important from the viewpoint of waste management.



Case Study 7

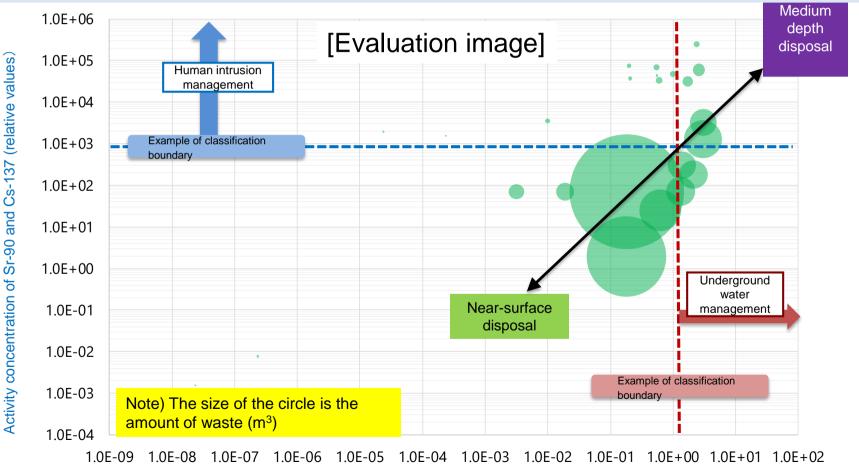
- Examples of evaluation of the human intrusion scenario -

- Due to the improvement in the performance of facilities, the waste for near-surface disposal tends to increase.
- Since medium depth disposal is also necessary, multiple concepts need to be studied.



- Examples of evaluation of the underground water migration scenario (C-14) -

- In the underground water migration scenario, the amount of radioactivity is important rather than the activity concentration.
- Among the rubble waste, the high-dose waste is likely to be contaminated with C-14.



©International Research Institute for Nuclear Decommissioning 131

-Concept of waste classification-

• By organizing the waste with the <u>concentration of the short half-life nuclides</u> and the <u>amount of the</u> <u>long half-life nuclides</u> on the axes, it is possible to study the management of each waste (using sensitivity analysis results or important overseas reference cases).

Moreover, the priority levels of waste and nuclide analysis can be set.

Amount of radioactivity of C-14 (relative values)

-Study of management proposals using important overseas reference cases-

Important overseas reference cases can be used to study management for each of the evaluation scenarios

No.	Important reference cases	Applicability to 1F waste disposal	Category	Human intrusion scenario	Underground water migration scenario	Others (Efficiency improvement etc.)
1	Facility structure with a Cap System	Possible (Depends on the location)	Disposal facilities	0	ο	
2	Facility structure to control human intrusion	Possible (Technical study required)	Disposal facilities	ο		
3	Use of very low level waste as a backfill material	Possible (Evaluation required)	Disposal facilities			0
4	Large size disposal containers	Possible	Disposal containers			0
5	Other standard containers	Possible	Disposal containers			0
6	Concrete containers	Possible (Technical study required)	Disposal containers	0	0	
7	UK waste disposal strategy	Possible (Technical study required)	Pre-treatment			0
8	Large size container solidification	Possible (Technical study required)	Solidification	0	0	
9	Mixed waste solidification	Possible (Change the inventory management))	Solidification			0
10	Settings of short-half-life medium-level waste category	Possible (Technical study required)	Control and management	0		
11	Inventory management system	Possible (Change the inventory management)	Control and management			0
12	Institutional control	Applied	Control and management	0		
13	Acceptance of waste containing materials with impact	Possible (Partially applied)	Evaluation method			0
14	Evaluation of long-term degradation of engineered barriers	Applied	Evaluation method		0	
15	Probabilistic Safety Assessment	Possible (Technical study required)	Evaluation method			0

c. Case studies of multiple disposal concepts -Summary of Case Study Results-

How are the effects of the treatment or disposal concepts evaluated?

- The effects of the treatment or disposal options can be evaluated with the dose.
- -However, since the parameters are mutually related, it is necessary to take a note of this while evaluating the results.
- It is also possible to evaluate each disposal concept by the amount of waste in each disposal classification.
- Important nuclides and important scenarios can be specified.
- Operating methods such as institutional control etc. can also be considered.
- How to provide a feedback for the results obtained?
 - It is possible to study the management of evaluation scenarios by means of using important overseas reference cases etc.
 - The waste can be organized with the short half-life nuclide concentrations and the long half-life nuclide amounts on the axes.
 - By organizing in this manner, it is possible to specify important nuclides and important waste having a higher study priority.
 - The performance requirements of the waste can be evaluated.

d. Summary of Results

1. Results of investigation of overseas reference cases

- Important overseas reference cases were selected and along with evaluating these cases for applicability to 1F waste disposal, they were reflected in the study of disposal concepts.
- 2. Study process of disposal concept considering waste characteristics
 - A disposal concept study process was developed in order to study the "Waste Management Strategy" that provides an overview of the entire process from treatment to disposal.

3. Case studies of multiple disposal concepts

Case studies were carried out on cases where the confinement performance for the disposal facilities, disposal containers, and solidified bodies had been improved, and it was confirmed that it was possible to verify the effects and provide feedback.

(2) Measures for Materials with Impact on Disposal -Implementation plan and Goal achievement index-

FY	Implementation plan	Goal achievement index
2017	 Case studies on acceptance criteria of waste inside and outside Japan will be surveyed, regarding not only radionuclides but also materials that impact treatment and disposal methods. 	 Presentation of cases that address the acceptance criteria of waste in terms of the content such as materials with impact on disposal.
2018	 Case studies on acceptance criteria of waste inside and outside Japan will be surveyed. Based on the survey results, concepts regarding the acceptable concentrations and contents of materials with impact on disposal etc. in the waste which are presumed to mix up in the waste at the predisposal management and disposal facilities, will be consolidated. 	 Presentation of concepts regarding the acceptable concentrations and contents of materials with impact on disposal etc. in the waste at Fukushima Daiichi Nuclear Power Station.

(2) Measures for Materials with Impact on Disposal -Concepts of Acceptable Concentration Settings-

① Materials with a potential adverse impact on the human body and the environment

• In the USA and UK, controlled substances and their concentrations have been stipulated by regulations (such as 40CFR261 etc.).

•However, in the UK, there are examples of <u>classifying the target materials</u> and implementing <u>control</u> <u>requirements / segregation requirements (Table 1)</u> as well.

② Materials with impact on migration of nuclides

• Although there are examples where the target materials have been indicated by the Standard Review Plan (NUREG/CR-6758) etc., the <u>handling differs according to the safety assessment by each disposal facility</u>.

Table 1 Example of category-wise requirement levels in UK

Category	Requirement level	Typical materials
Category 1	Requirement of control only without any specific restrictions or segregation requirements. The amount of the materials concerned needs to be recorded in the inventory.	Halogenated plastics, asphalt, copper, stainless steel, etc.
Category 2	Segregation required. Waste with the content of the materials concerned equal to or within the criteria for acceptance can be accepted. The amount of the materials needs to be recorded in the inventory.	Arsenic, lead, mercury, electronic parts, etc.
Category 3	Materials classified as hazardous materials. Special management is required for these materials until disposal.	Asbestos, oil, solution, etc.

Table 2 Example of regulations for materials which impact migration of nuclides

WCS disposal facility (US):

- Chelating material must not exceed 8% of the disposal facilities (mass) at the most.

LLWR disposal facility (UK):

- Classification into control requirement or the segregation requirement depending on the chelating material.

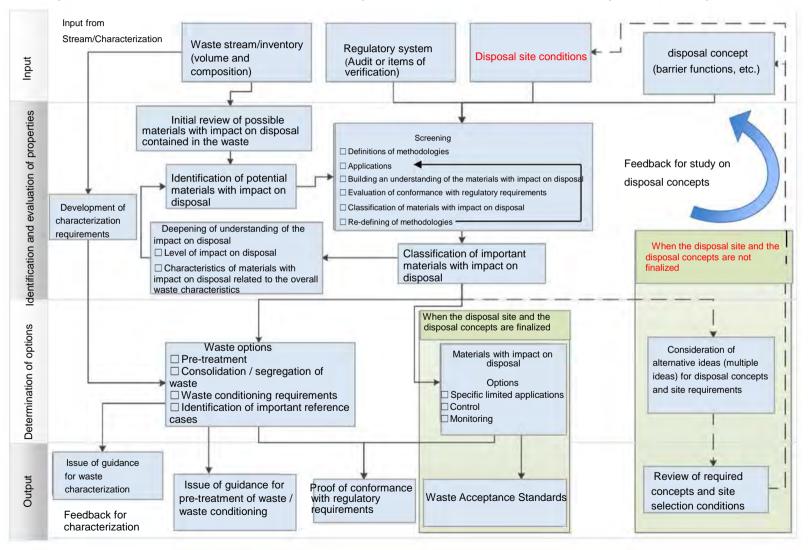
- Application of the Best Available Method (BAT^{*1}).

- In the safety assessment, long-term decomposition is assumed while the impact is not considered.

◆ RWM disposal facility (UK) (Planning stage: HLW^{*2}, ILW^{*3} and some of the LLW^{*4} are the targets):

- Selecting ISA (iso-saccharin acid) as a representative of the chelating material and assessing safety by revising the solubility and distribution coefficient is being planned.

*1 Best Available Technique *2 I

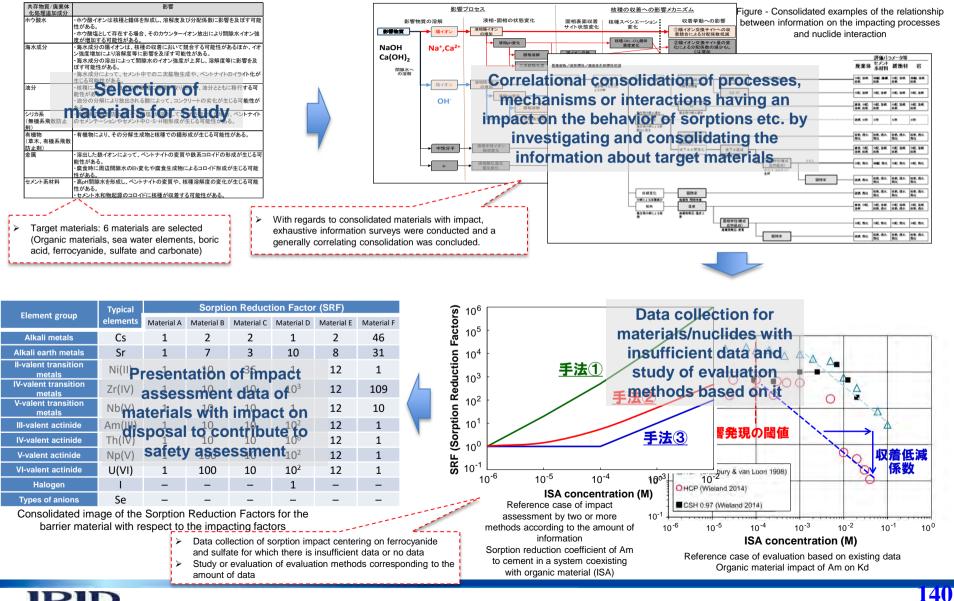

*2 High level waste

*3 Intermediate level waste *4 Low level waste

(2) Measures for Materials with Impact on Disposal -Concepts of Acceptable Concentration Settings-

Proposed flow chart of the evaluation process of materials with impact on disposal etc.

(3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal


-Implementation plan and goal achievement index-

FY	Implementation plan	Goal achievement index
2017 2018	 Methods of quantitative evaluation will be studied for the impact of components that are known to have an impact on barrier performance (structural and nuclide migration-related chemical properties transformation) and nuclide migration (nuclide migration-related chemical properties transformation) at the time of disposal . To consolidate the waste characteristics and materials with impact on disposal and select the materials with impact, which will be targeted in this project. 	 Presentation of quantitative evaluation indices for impact on barrier performance or for impact on nuclide migration at the time of disposal. Presentation of a list of the materials with impact
	 To study the proposed impact assessment methods in accordance with the understanding or basic information about the impacting processes of the typical materials with impact, etc. To study the quantitative methods of impact assessment by conducting investigations and data collection concerning mutual interaction between the nuclides and the main materials with impact A predictive study of evaluation methods concerning specification items, which should be considered on the basis of the developed impact assessment methods 	 Presentation of proposed common evaluation method for assessment of impact on disposal Presentation of data and trial results intended for impact assessment of the nuclides and main materials with impact Presentation of predictive evaluation results of specification items which should be considered during disposal

(3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal -Flow of Study-

Table List of materials with impact (Consolidated examples of impact)

(3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal -Selection of materials with impact to be considered for investigation and evaluations-

Classification of materials with impact

- The accident waste is classified into 4 types namely, secondary waste generated from contaminated water treatment, rubble/felled trees etc., fuel debris, waste from dismantlement, and then consolidated by dividing the materials with impact, assumed to be contained in the above waste, in two divisions namely, components of sources of waste and coexisting materials.
- Selection of targets for investigation and evaluation
- Organic materials, sea water elements and boric acid solution are selected as coexisting materials commonly contained in most of the accident waste.
- Ferrocyanide, sulfate and carbonate are selected as components of sources of waste with concerns about impact, from amongst the secondary waste generated from water treatment and which have a comparatively high priority although there is not much commonality.

 \Rightarrow Investigation and evaluation were conducted this year for these six types of materials with impact.

					Seco	ondary	waste w	gener ater tr	ated fr eatmer	om co nt	ntamin	ated			F	Rubble	e/Felle	ed tree	es etc	:		W: dism	aste fro nantlen	om nent
Sources of waste		s of waste	Cesium adsorption tower	Secondary Cesium adsorption tower	Sludge from decontamination systems	Iron coprecipitation slurry	Carbonate slurry	Ag impregnated carbon	Titanate	Titanium oxide	Ferrocyanide	Chelate resin	Resin-based adsorbent (Column)	Filter	Rubble (concrete)	Rubble (metallic)	Rubble (other)	Felled trees	Soil	Used protective clothing	Fuel debris	Waste from dismantlement (concrete)	Waste from dismantlement (metallic)	Waste from dismantlement(others)
		-Zeolite	0	0																				
		Silica-based materials	0		0																			
		Iron hydroxide			0	0																		
		Carbonate					0																	
	waste	Magnesium hydroxide					0																	
	f wä	Sulfate			0																			
ರ	s of	Activated carbon						0																
npa	Irce	Organic materials			0	0	0	0	0	0	0	0	0	0			0	0	0	0				0
h in	sources	Titanium-based materials		0					0	0														
Materials with impact	of	Ferrocyanide			0						0													
eria	Components	Metals	0	0		0	0	0	0	0	0	0	0		0	0					0	0	0	
/ate	Iodu	Concrete													0							0		
2	bom	Debris																			0			
	0	MCCI Debris																			0			
		Borides & Carbides Sea water																			0			
		elements	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
	sle	Boric-acid solution	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0
	Coexisting materials	Oil	0	0	0	0	0	0	0	0	0	0	0	0							0	0	0	0
	Coe	Organic materials Silica-based	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0
		materials Products with fuel													0	0	0							
		deposits																				0	0	0

O: Materials with impact contained in the source of waste

 (3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal
 -Selection of nuclide migration parameters intended for investigation and evaluation-

Consolidation of effects of materials with impact on nuclide migration during disposal

The barrier compositions, the safety functions expected from the various barriers, nuclide migration parameters and impacting factors of the materials with impact on the parameters, in the earlier disposal concepts, were consolidated (Figure 1 is an example of marginal depth disposal).

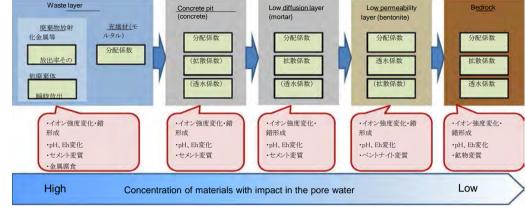


Figure 1 Disposal barrier composition and impacting factors

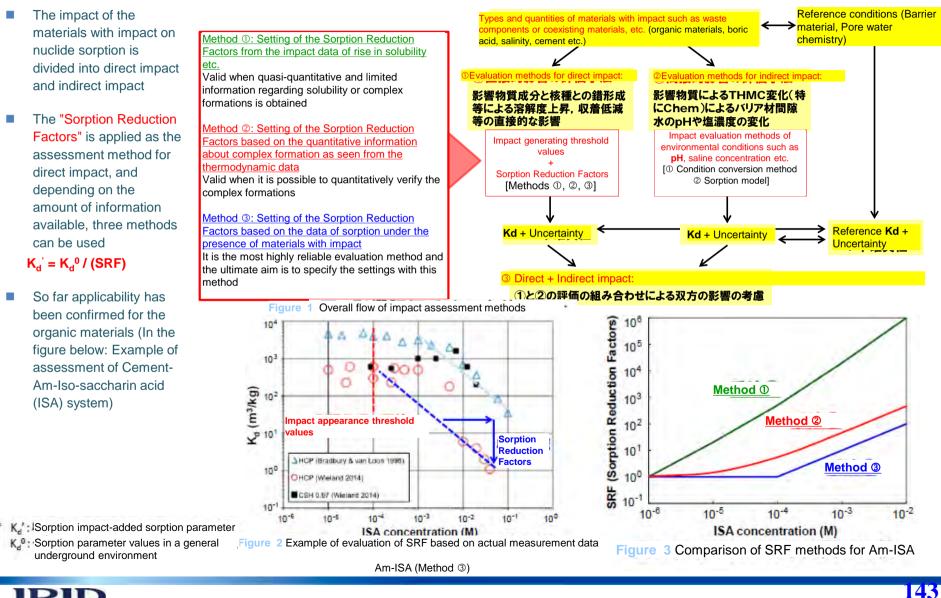
Table 1 Parameters related to barrier materials of each disposal concept

		Waste layer	Waste layer		Buffer material / Impervious		
		(vitrified waste and over	(filler, pit)	Low diffusion layer	soil	Bedrock/Soil	
		packing)					
		Glass/Carbon steel	Cement-based materials	Cement-based materials	Bentonite-based materials		
0	Trench disposal	-	(Release rate)	-	-	Distribution coefficient	
-			Distribution coefficient			Diffusion coefficient	
						Permeability coefficient	
	Concrete pit disposal	-	(Release rate)	-	Distribution coefficient	Distribution coefficient	
			Distribution coefficient		Permeability coefficient	Diffusion coefficient	
					(Diffusion coefficient)	Permeability coefficient	
	Marginal depth disposal	-	Release rate	Distribution coefficient	Distribution coefficient	Distribution coefficient	
			Distribution coefficient	Diffusion coefficient	Permeability coefficient	Diffusion coefficient	
				(Permeability		Permeability coefficient	
				coefficient)			
	Geological disposal	-	Release rate	-	Distribution coefficient	Distribution coefficient	
	(TRU)		Distribution coefficient		Permeability coefficient	Diffusion coefficient	
			Solubility		Diffusion coefficient	Permeability coefficient	
			Diffusion coefficient				
	Geological disposal	Glass dissolution speed	-	-	Distribution coefficient	Distribution coefficient	
	(HLW)	Metal corrosion speed			Solubility	Diffusion coefficient	
					Permeability coefficient	Permeability coefficient	
					Diffusion coefficient		

□ Selection of nuclide migration parameters and barrier materials that must be studied on priority

And, those barrier materials and nuclide migration parameters, which were expected to be significantly affected by the materials with impact in the area close to the waste, were selected (Table 1).

Sorption parameter


Cement-based materials and bentonite based materials

IRID

©International Research Institute for Nuclear Decommissioning

(3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal

-Approach pertaining to assessment of impact exerted by materials with impact on nuclide sorption-

(3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal -Consolidation of the process of impact of each material with impact on nuclide sorption-

- Study of the process of impact (Direct and Indirect impact) of the materials with impact on nuclide sorption
- In case of organic materials, as shown in the flow chart on the right, the impact due to complex formation and the competitive sorption between cation/anion are selected as direct impact.
- Consolidation of the impact process of each material with impact in a tabular form
- ⇒ Identification of the "Direct impact" impact process of six materials with impact, which are the focus of this project

IRID

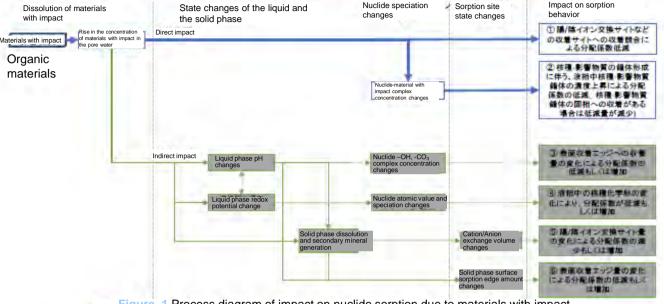


Figure 1 Process diagram of impact on nuclide sorption due to materials with impact (E.g.: Organic materials)

Table. 1 Consolidated tabular example of the process of impact on nuclide sorption due to

materials with impact

Ζ

					materials with	impuot			
Material with impact		Types of	Impact	process	Mechanism impacting the sorption of nuclides				
Types of material with impacts	Characteristics of material with impacts	Impacts	Changes in the pore water liquid phase	Changes in barrier material solid phase	Nuclide speciation changes	Change of state of the solid phase surface sorption site	Impact on sorption behavior		
Organic substances	ISA etc.	Direct impact	⇒-	⇒-	→	⇒	Decrease in the distribution coefficient due to the competitive sorption at the sorption site such as the cation/anion exchange site etc.		
					Nuclide-impacting material complex concentration changes	4	Following the nuclide-impacting material complex formation, decrease in the distribution coefficient due to the rise in the concentration of the nuclide-impacting material complex in the liquid phase (The amount of the decrease reduces when there is sorption of the (+)nuclide-impacting material complex to the solid phase)		
Sea water	High NaCl Mg ²⁺	Direct impact	⇒		4	->	(1) Decrease in the distribution coefficient due to the competitive sorption at the sorption site such as the cation / anion exchange site etc.		
elements	SO4 ²				Nuclide-impacting material complex concentration changes		Collowing the nuclide-impacting material comple formation, decrease in the distribution coefficient due to the rise in the concentration of the nuclide-impactin material complex in the liquid phase (The amount of th decrease reduces when there is sorption of th (+)nuclide-impacting material complex to the soli phase)		
		Indirect impact	a	Solid phase dissolution	\rightarrow	Cation / anion exchange volume changes	Decrease or increase of the distribution coefficient due to the changes in the cation/anion exchange site amount		
				and secondary mineral generation	<i>→</i>	Solid phase surface sorption edge amount changes	Obcrease or increase of distribution coefficient due to th changes in the surface sorption edge amount		

 (3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal
 Information survey and data collection necessary for impact assessment -

Based on the predominant direct impact process of each material with impact, a document survey of the information essential for quantitative assessment of the Sorption Reduction Factors was conducted (Table 1).

As insufficient sorption data, the impact exerted on sorption by ferrocyanide, etc. was focused on and the sorption data was obtained.

Nuclides: U(VI), Np(V), Th(IV), Am(III), Ni(II), Sr(II), Cs(I)

Barrier material: Ordinary portland cement (OPC) and Montmorillonite

□ Some actinides show distinct ferrocyanide concentration dependence (Figure 1, Figure 2) ⇒ Reflection in the Sorption Reduction Factors Table 1 Details of investigation and data collection on each target material with impact

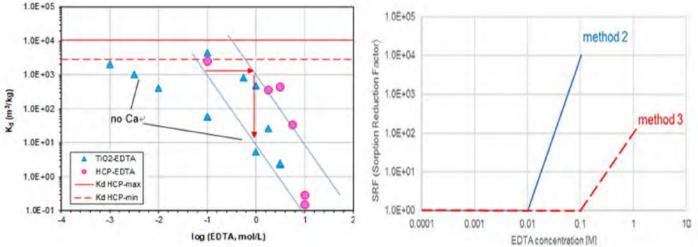
Materials with impact	Details of investigation analysis and data collection										
Organic materials	 Expansion of data related to the complex formation or distribution coefficient of EDTA-actinide nuclide Analysis of thermodynamic data of ISA for the study of uncertainties in TDB 										
	 Consolidation of the characteristics and impacts of various organic materials 										
Sea water elements	Selection of data from the Sorption Data Base (SDB), which can enable the quantitative										
	evaluation of impact of sea water elements on the K_d of cement-based materials										
Boric-acid solution	Consolidation of sorption test data of nuclides obtained in previous projects with respect to										
	the cement-based and bentonite-based materials and understanding the impacts										
Ferrocyanide	Collection of K _d data of nuclides with respect to the cement-based and bentonite-based										
	materials under the presence of ferrocyanide										
Sulfate	Consolidation of existing information related to the K _d of nuclides with respect to the cement-										
	based and bentonite-based materials										
0	Collection of ternary compound system sorption data under constant ionic strength conditions										
Carbonate	Consolidation of actual K _d measurement values of bentonite based material under the presence of carbonic acid										
	 Verification of impact of carbonic acid by calculating speciation by means of the TDB 										
	Verification of impact of carbonic acid by calculating speciation by means of the TDB EDTA: Ethylenediaminetetraacetic acid, TDB: Thermodynamic Data Bas										
1E+2	1E+0										
	Δ										
1E+1											
8											
5 1E+1											
2	Q. X										
	OpH4										
	+ pH8										
and the second	A pH10										
1E+0	1E-2										
1E-5 1E-4	1E-3 1E-2 1E-1 1E+0 1E-5 1E-4 1E-3 1E-2 1E-1										
Na ₄ [Fe(C	N) ₆] concentration [mol/L] Na ₄ [Fe(CN) ₆] concentration [mol/L]										
Figure 1 lest res	ults of sorption of U(VI) in cement ce of ferrocyanide Figure 2 Test results of sorption of Np(V) in Montmori under the presence of ferrocyanide										

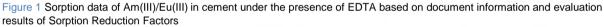
IDID

(3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal

- Development and trial of Sorption Reduction Factor evaluation methods -

\Box Organic materials (EDTA)


☐ The data on sorption impact of organic materials other than isosaccharin acid (ISA) is limited, but if data is available, SRF can be evaluated in the same manner. (Figure 1).


It is necessary to note the uncertainty of the thermodynamics data in view of the complexity of complex formation of the organic materials during evaluations based on the thermodynamics data (Method ⁽²⁾).

Ferrocyanide

□ A Sorption Reduction Factor having a high reliability can be set by acquiring the actual measurement data (Figure 2)

However, reliability of the collected data and sufficient understanding of the impact process (for instance, pH dependency in the figure on the right) is important.

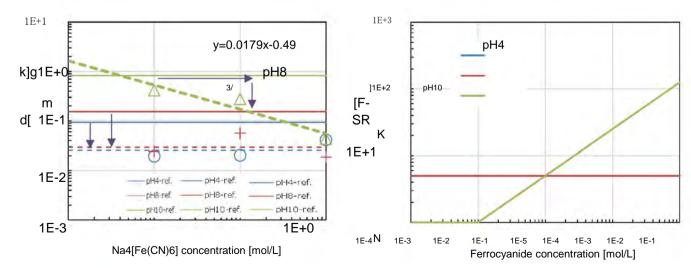


Figure 2 Sorption data of Np(V) in Montmorillonite under the presence of ferrocyanide based on the collected data and evaluation results of Sorption Reduction Factors

IRID

©International Research Institutefor Nuclear Decommissioning 145

- (3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal
- Summary of results of trial settings of sorption reduction factors at present (Example of cement) -

				Sorption Re	duction Factor	(SRF)		
Element group	Typical element	Organic material	Organic material	Sea water	Boric acid	Ferrocyanide	Sulfate	Carbonate
		ISA 1×10 ⁻² M*	EDTA 1M*	Ionic strength 0.68M*	Na2B10O16 2×10-3M*	Na4[Fe(CN)6] 1×10 ⁻¹ M*	Na2SO4 1×10 ⁻² M*	CO3 ²⁻ 1×10 ⁻² M*
Alkali metals	Cs	1		2			2	1
Alkaline earth metals	Sr	1		7		1	4	1
II-valent transition metal	Ni	1	1.5×10 ⁴ (EDTA 5×10 ⁻² M [*])	10			4	1
IV-valent transition metal	Sn	102		10			1	1
V-valent transition metal	Nb	1		10			1	
III-valent actinide	Am	10 ²	$10^2 \sim 10^4$	10			1	1
IV-valent actinide	Th	106	10 ²	10			1	1
V-valent actinide	Np	10		100		1	1	1
VI-valent actinide	U	10 ²	1	100		8	1	1
Halogen	I	1					1	-**
Types of anion	Se			_**			1	_**

*M: mol/L, ** $K_d = 0 (m^3 kg^{-1})$ is set.

: Set on the basis of past information survey results.

Set on the basis of data acquired from sorption tests. (Items that have not yet been set, will be set in the future or after expanding the data)

There is no past information survey and data collection. (Includes items for which absence of investigation results and data, etc. is verified)

 (3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal -Summary of impact on disposal and issues (1/2)-

Materials with impa	ct Impact on sorption during disposal and points to be noted
Organic materials	 As regards the impact of organic materials, since the past findings are comparatively substantial, the impact of EDTA on sorption was studied in addition to the impact of the cellulose decomposition product namely, iso-saccharin acid (ISA). Although the degree of impact differs according to the types of organic materials or nuclides, there is a high possibility that the impact of organic materials on disposal will be significant compared to other materials with impact on disposal as well. It is necessary to study the application of evaluation methods, including methods that consider thermodynamic data, for the evaluation of the combination of various organic materials and nuclides, while assuming organic materials and their decomposition products that may be contained in the accident waste.
Sea water elements	 As regards the impact that sea water elements have on nuclide sorption, since the past findings are comparatively substantial, a fairly quantitative evaluation is possible and a fairly large sorption reduction impact is anticipated depending on the nuclide. It is necessary to conduct a detailed investigation of the sorption mechanisms of each nuclide and the impact of the sea water elements, because in addition to the impact of competitive sorption or complex formations with the sea water elements, in the case of cement, even the changes during the sorption phase are likely to have an impact. It is necessary to pay attention to the realistic evaluation of sea water element deposits based on the characterization of waste, and to the study of waste conditioning when the concentration of the deposits is high, and in addition, it is also necessary to note that the sea water elements can cause changes in quality of cement-based materials.
Boric-acid solution	 As regards the impact of boric acid, since the past data is extremely limited, the data of impact on sorption was collected and based on these results, it was confirmed that boric acid has very little impact on alkali metals and the alkali earth metals, but in case of actinides, boric acid had an impact to some extent. As the collection of sufficiently accurate test data pertaining to nuclides having a high sorption performance, such as the actinide nuclides, is a challenge, study of the evaluation of the impact of complex formations by boric acid and its correlation with sorption reduction, the evaluation of competition with other ligands such as carbonate complexes etc., and the evaluation of the sorption reduction factor, considered substantially even the correlation of impact between nuclides, needs to be continued. In addition to the fact that boron is a standard environmental substance, when the boric acid deposition is high based on waste characterization, it is necessary to appropriately consider the evaluation of boric acid concentration and the impact of nuclide migration in the vicinity of the waste.

(3) Clarification Items Having Impacts on Disposal Safety Evaluation Methods of Solid Waste Disposal / Study of Analytical Evaluation Methods for Materials in Solid Waste with Impact on Disposal -Summary of impact on disposal and issues (2/2)-

Materials with imp	pact Impact on sorption during disposal and points to be noted
Ferrocyanide	 Since there are almost no past findings with respect to ferrocyanide, sorption data under the presence of ferrocyanide was collected during this project and using these results, the impact of actinides on sorption with respect to cement and bentonite, was assessed. It has been surmised that the impact due to nuclide or pH conditions is complicated, therefore, it is necessary to understand the relationship between the impact of complex formations and sorption reduction by ferrocyanide, expand knowledge such as the correlation of impact between nuclides, and continue to study the evaluation of the sorption reduction factors reflecting this knowledge. In addition to the fact that all cyanogens are standard environmental substances, it is necessary to evaluate the behavior of the ferrocyanide itself inside the waste or in the disposal environment and conduct a study that includes management during pre-treatment.
Sulfate	 From the evaluations based on the thermodynamic data, while it has been presumed that sulfate complexes have hardly any impact on nuclide sorption, since the dependence of Kd on sulfuric acid concentration during relatively high sulfuric acid concentrations has been confirmed during the sorption tests of U(VI) to cement-based materials under the presence of sulfuric acid during this project, a further study is necessary in view of this variation. The sulfate in the accident waste exists chiefly as barium sulfate, its solubility is low and is highly likely to be below the concentration at which the impact manifests; therefore, it can be said that the priority of expanding the data is comparatively low. Although ettringite and cracks are likely to be generated due to the reaction between the cement components and sulfuric acid during cement solidification, as mentioned above, it is presumed that it does not pose a problem if the sulfuric acid concentration is low.
Carbonate	 As regards the impact of carbonate, since it is an element that is originally found in nature in rocks or underground water environments, its impact assessment methods have also been studied during research in the past. Calcite is a component in both cement-based as well as bentonite-based materials, and the pore water is in equilibrium with calcite; therefore, it is assumed that calcium carbonate from accident waste is unlikely to dissolve. Even when no carbonates are derived from accident waste, the impact of carbonic acid concentration in pore water is taken into account, and the need to further consider the impact of carbonates contained in accident waste is considered to be unlikely.

5. Research on Waste Stream

Contents of Report

(1) Integration of R&D Results (Establishment of Waste Stream)

- •What is integration of R&D results?
- ·Results of past studies on waste stream
- Implementation plan and overview of FY2017 FY2018
- Action items for FY2018

Review of waste classification

Study on the background and purpose of R&D

Study on the concept of input information management sheet

Summary of integration into waste stream

(1) Integration of R&D Results (Establishment of Waste Stream)-What is Integration of R&D Results (Waste Stream)?-

Background

• In Fukushima Daiichi, there are various types of solid wastes (all waste other than debris) that are of a wide variety, with unknown characteristics, and have different urgency levels (high and low).

• All of these solid wastes will eventually need to be disposed.

• However, completing the research on characterization and disposal of waste requires time.

Against this background, the following specific methodologies for integration of R&D results (waste stream) were studied.

- Consolidating the flow (waste stream) from solid waste generation to treatment (segregation / volume reduction / stabilization), storage and up to disposal.
- Rationally and effectively promoting R&D by providing feedback on information (characterization, disposal, etc.) to R&D, along with getting an overview of the overall system.

(1) Integration of R&D Results (Establishment of Waste Stream) -Results of Past Studies on Waste Stream-

I. Creating a list of all solid wastes

In order to exhaustively study the solid wastes, wastes identified as solid wastes in 1F were compiled into a waste list.

II. Classification of solid wastes

Solid wastes listed in the waste list were classified based on their "characteristics", "contamination category" and "contamination source / contamination history".

III. Study on the treatment options for each classification

The treatment options for the classified solid wastes were studied and their treatment flows were developed.

IV. Study on the technologies for refining the treatment options

Methods for refining the treatment options pertaining to the treatment flow (BPEO: Best Practical Environmental Option) were studied, and the necessary actions for refining were consolidated.

V. Refinement of treatment options from research results, and integrating them as a whole

The treatment options were refined based on research results and new issues, and the waste stream was established through overall integration.

(1) Integration of R&D Results (Establishment of Waste Stream) -Implementation Plan and Overview of FY2017 to FY2018 -

FY Goal achievement index Implementation plan 2017 • The promising waste streams presented in FY2016 are comprehensively Presentation of the progress, the consistency evaluated with respect to the progress, consistency of the outcomes, and of the outcomes, and remaining issues. remaining issues by reflecting the latest results obtained in previous research. 2018 • The waste streams are repeatedly examined by reflecting issues and Establishment of comprehensive methods to research results obtained in FY2017, and evaluation results are presented evaluate progress, consistency, and issues and the based on it. presentation of evaluation results based on them. Process Input Output Summary of results for FY2017 and FY2018 Assurance of comprehensiveness Methods to comprehensively manage the progress and issues in R&D were designed and tried (Figure). Clarification of Vaste-specific input necessary information (Treatment flow) In order to ensure the comprehensiveness of target waste, necessary information and issues management sheet information and issues were identified using the classification of treatment flows established, based on the list that enumerates all types Details are shown from next slide of waste on 1F (waste list), and a waste-specific input information Information required for management sheet and a list to verify matching between issues and studying each step and issués outcomes were created. In order to introduce schedule management, consideration time Research results Introduction of schedule management schedules were set for each step of waste management process for Time schedul Consideration scheduling arrangement table individual waste based on the Mid-and-Long-Term Roadmap and the for each step for Mid-and-Longindividual waste Term Roadmap storage and management plan, and a time schedule arrangement (Details are shown from next slide) table was created. In order to assign priorities and organize methods, the total image of TEPCO HD's waste storage and waste management is clarified from the result of organization as listed management plan Assign priorities and organize methods Waste stream (Total above and flows are integrated into the form of a waste stream.

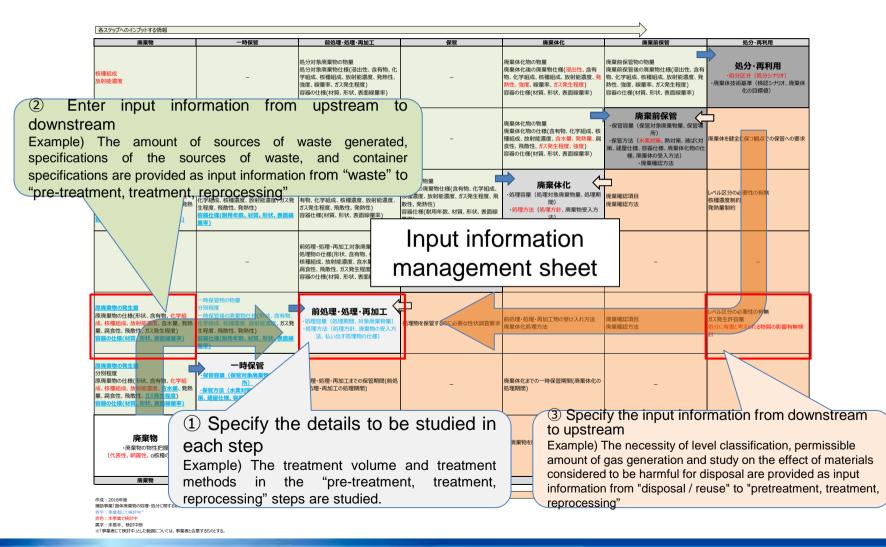
The progress, the consistency of the outcomes, and remaining issues were clarified using the established method.

(Details are shown from next slide)

image of waste stream)

Figure Overview of the study on waste stream

Clarification of total


image of waste management

RID

- Implementation Plan and Overview of FY2017 to FY2018 -

Information required for studying each step and consolidation of issues

Consolidate the flow of information between steps and create input information management sheet.

-Implementation Plan and Overview of FY2017 to FY2018 -

Setting the start time of each step for each type of solid waste

Create a time schedule arrangement table stating the start time of treatment and storage, based on the Mid-and-Long-Term Roadmap and the storage management plan of TEPCO HD. Ensure that there is no change in the plans.

	廃棄物分類			一時保護					ed, and the
	S1_庄力容器	-	(未検討)	(未検討)					nerated and
	S2_格納容器金属	-	(未検討)	(未検討)					e of which i
#体に伴って発生する 可能性のある廃棄物	53_格納容器コンクリート	-	(末検討)	(未検討)			an soon	green ce	ens), was
	S4_建屋内金属	7	(未検討)	(未検討)	assun	neu.			
	S5_建屋内コングリート	-	(未検討)	(未検討)	(未検討)	(states (())	(未枝對)	(未検討)	(末検討)
設設理護備、タンク	56_互融金属	1	(発生意練)	(保管総統)	(計画済み)	(計劃済み)	(未検討)	(未検討)	(未検討)
	57_互建コンクリート	-	(発生継続)	(保管維病)	(計画済み)	(計圖済み)	(未検討)	(未検討)	(未検討)
國生難資体、伐張木	S8_可维物	7 T		(1100000)	CHARLEN	(q	(未検討)	(未検討)	(末検討)
	S9_吸着塔1	KURION, SA	ime sche	dule arra	ngement	table 🖦	(未検討)	(未検討)	(未検討)
	S9_吸着塔2	モバイル浄化装置	(発生継続)	(保管継続)	(東東日の総核對中)	(東東市の副神社中)	(未検討)	(未検討)	(末検討)
	S10_多核種除去装置3-1	スラリー	(発生意練)	(保管継続)	2020年 ^{回1}	2020年#1	(未検討)	(未検討)	(未検討)
処理2次商業物	S10_多核種除去装置 3 - 2	吸着材	(発生継続)	(保管総統)		(東南山田県市中)	(未検討)	(未検討)	(未検討)
ALC: A COLUMN	S10_多核種除去装置4-1	処理カラム	(発生駆練)	(保管維続)			(未検討)	(未検討)	(未検討)
	S11」除染装置スラッジ	AREVA	(発生終了)	(保管制統)	2020年 ⁸²	2020 ^{年※2}	(未検討)	(未検討)	(未検討)
	\$12_74119b	高性能多核種	(発生継続)	(保管継続)	(東東HD聯接對中)	(東東山田神村中)	(未枝對)	(未検討)	(末横討)
	S13_濃縮兩液	エバポ農植南液	(発生停止中)	(保管総統)	(東電HD聯接對中)	(東島日の開始計中)	(未検討)	Outlined [.]	Not yet studied
「ジ」取出し朝の発生感	S14_デブリ取出し前の発生廃業 物(横アクセス)	横アクセス	(未検討)	(未検討)	(未検討)	(未検討)	(未検討)	Green sha	
2.000008009070	514-1_デブリ取出し前の発生廃 兼物(縦アクセス)	縦アクセス	(未検討)	(未検討)	(未枝財)	(未検討)	(未検討)		ontinuously
染土場等			(発生感練)	(計画済み)	(未枝財)	(未検討)	(未検討)	Planned Under stu	dv
	金属(SFP、サイトバンカ保		(未検討)	(未検討)	(未検討)	(未検討)	(未検討)		
被成業物	(3) ドレンパンパンパンパンパンパン(20) (10) (20) (20) (20) (20) (20) (20) (20) (2		CAPADICED V	V-d-Old WAY	and an and a second sec	actopolitika.	Print and a second second		

※1:東京電力ホールディングス株式会社,特定原子力施設放射性廃棄物規則検討会(第6回)資料2 スラリー、スラッジの安定化処理に向けた検討状況、2017年7月25日

(2:東京電力ホールディングス株式会社,特定原子力施設放射性廃棄物規制検討会(第55回)資料4 地震・津波対解の連拔状況,2017年8月30日

In FY2018, the following was implemented in relation to the operational issues identified in FY2017 and integrated into the waste stream.

① Review of waste classification

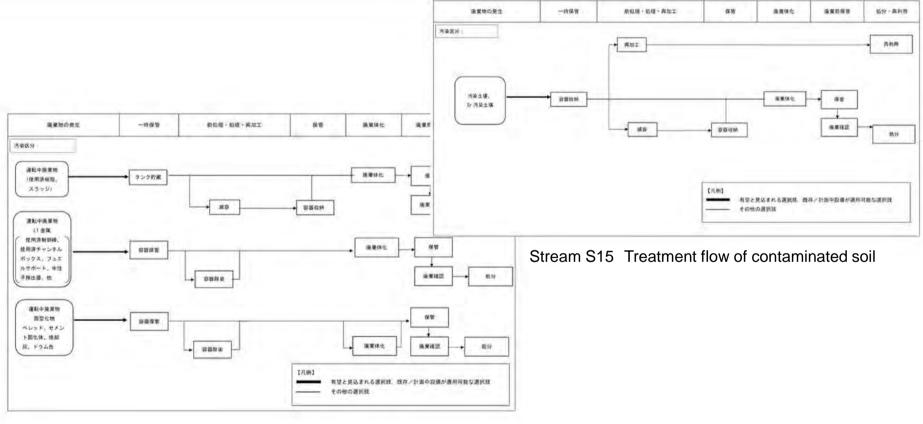
With the waste list as the base, as before, the solid wastes were classified and managed based on the contamination route and waste characteristics, by keeping pace with research related to the characterization project that is being carried out in parallel with the R&D for the treatment and disposal of solid wastes. Also, when solid wastes needed to be classified from the viewpoint of treatment and disposal, the options were indicated on the waste stream treatment flow so that they could be linked.

② Study on the background and purpose of R&D

In FY2017, the background and purpose of past R&D was consolidated, and it was confirmed that the issues can be appropriately identified by means of the created method. Meanwhile, it was realized that the background and purpose of R&D needs to be consolidated based on the research subject in order to mutually share feedback between projects. Therefore, in FY2018, in this project we tried to check the progress on input information management sheets across IRID.

③Study of the concept of input information management sheet

The concepts were examined so that the input information management sheet can be reviewed and revised appropriately by the concerned personnel in the future.


Review of waste classification (1/2)

In accordance with the R&D related to characterization, contaminated soil (S15) was added to waste from dismantlement and operational waste (S16) was added as solid waste existing at the site before the accident.

									保管 - 在	U#7=-							
		1			解体廃棄物				飛龍	上课	可燃物		汚染	水処理二次廃	棄物	0	事故前
	荷乘区分	\$1	S2	\$3	S4	S5	\$14	S15	- S6	S7	S8	S9	S10	S11	S12	S13	\$16
		圧力容器	格納容型 金属	格納容器 2399-5	健屋内 全属	建尼内 3299-2	デブ取9 廃棄物	汚染土壤	瓦礫 金属	瓦礫 12/99-1	可燃物	吸着塔	多核種 除去装置	除染装置 737ジ	7.003	續縮廃液	運転中 廃棄物
0-1	軽微破損燃料																
0-11	燃料デブリ																
о- Ш	燃料デブリ+ CB/CR																
1	MCC1 ₹ 7 9.					1											
Ш	放射化污染+ 二次污染	o	O	Ø			o										
ш	炉水汚染+ ベント				Ö		Ø										
IV	炉水汚染+ ペント (a)				0		0										
۷	炉水污染+ 潮留水污染				Ö.	Ø	Q.	Q									
VI	二次污染 (爆発)		Ø	Ø	Q	Ø	Q	Ø	Ø	Ø							
VII	二次污染 (74~879))					Ø	Ø	Ø	ō	Ø	Ø						
VIII	油分																
IX	$\sim F\bar{\nu}$																
x	除染廃液																
XI	汚變水划理 二次開業物											ō	ō.	0	ā	0	
XII	その他																Q

Review of waste classification (2/2)

Contaminated soil (S15) and operational waste (S16) were added and treatment flow was updated

Stream S16 Treatment flow of operational waste

Study on the background and purpose of R&D (1/6)

	廣臺物分類		质果物	一時保留	前処理・処理・ 再加工	64 M	廃業体化	廣東前保管	结分·再利用
	S1_庄力容器	-	(将来発生)	(将来検討)	It was o	confirmed	d that the	research	was
	52_格納容器会属	4	(将来発生)	(将来検討)				hat are cu	
解体に伴って発生する 可能性のある歴業物	S3_格納容器コンクリート	27	(将来発生)	(将来検討)				stes, the t	
THE LEVERY SHOP IN	S4_建屋内金属	-2	(将来発生)	(将来検討)	green		vnich is a	ssumed t	o start s
	S5_建屋内コンクリート	2	(将来発生) 研究中	(将来検討)	(Green	001107.	(开末(約))	(###K###)	\175.#XRIF/
反映如理装置。 タンク	S6_互履金属	-	(発生継続) 研究中	(保管雑練) 研究中	(減容設備計画)	(計画済み)	(将来検討)	(将来検討)	(将来検討)
9	\$7_瓦礫コンクリート	-	(発生継続) 研究中	(保管継続) 研究中	(減給約時間計画)	(計画済み)	(将来検討)	(将来検討)	(将来検討)
可燃性難固体、伐架木	58_可燃物		(発生離続) (研究中	(保管継続) 研究中	(焼却処理中) 将究中	(保管中)	(将来検討)	(将来検討)	(将来検討)
	59_吸着塔1	KURION, SARRY	(発生継続) 研究中	(保管継続)	(検討中)	(検討中)	(将来検討) 研究中	(将来検討)	(将来検討)
	59_吸着塔2	モバイル浄化装置	(発生補統)	(保管継続)	(検討中)	(検討中)	(将来検討) 研究中	(将来検討)	(将来検討)
	S10_多核種除去装置3-1	スラリー	(発生継続) 研究中	(保管雑純)	2020年	2020年	(将来検討) 伊安中	(将来検討)	(将来検討)
	S10_多核種除去装置3-2	吸着材	(発生継続)	(保管継続) 研究中	(検討中)	(検討中)	(将来検討) 研究中	(将来検討)	(将来検討)
水処理二次廃業物	S10_多核種除去装置4-1	処理カラム	(発生雑練)	(保管継続)	(検討中)	(検討中)	(将来検討) 研究中	(将来検討)	(将来検討)
	511_除染装置スラッジ	AREVA	(発生終了)	(保管継続)	2020年	2020年	(将来検討) 研究中	(将来検討)	(将来検討)
	512,71119	高性能多核種	(発生継続)	(保管継続)	(検討中)	(検討中)	(将来検討)	(将来検討)	(将来検討)
	513_濃縮廃液	コンに北京統領法	(発生停止中)	(保管継続)	(検討中)	(検討中)	(将来検討) 研究中	(将来検討)	(将来検討)
デブI取出し前の NH生廃棄物	514_デブリ取出し前の発生廃棄 物(縦、横アクセス)	-	(将来発生) 研究中	(将来検討) 研究中	(将来検討)	(将来検討)	(将来検討)	(将来検討)	(将来検討)
汚染土壤等	S15_汚染土壤		(発生継続) 研究中	(検討中)	(将来検討)	(将来検討)	(将来検討)	(将来検討)	(将来検討)
		金属(SFP、サイトバンカ保 管物等)	(豫生終了)	(保管継続)	(将来検討)	(将来検討)	(将来検討)	(将来検討)	(将来検討)
呆管承希物	516」運転中商業物	根脂	(発生終了)	(保管継続)	(将来検討)	(将来検討)	(将来検討)	(将来検討)	(将来検討)

注4:時間輸は東海

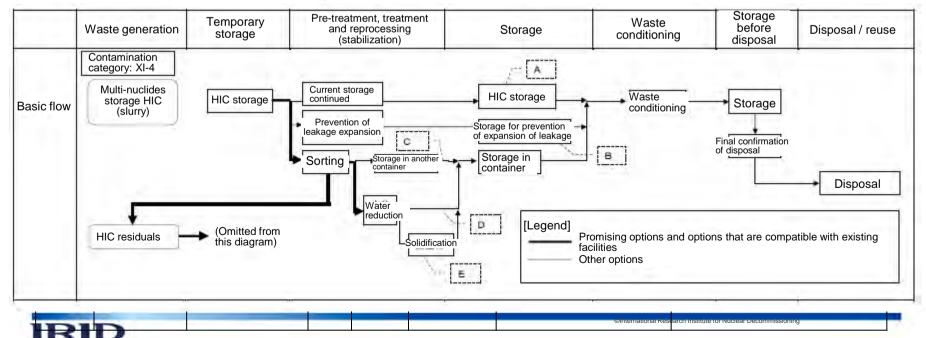
(Created from input information management sheet and time schedule arrangement table)

- · · *· · ·* ·,

Study of the background and purpose of R&D (2/6)

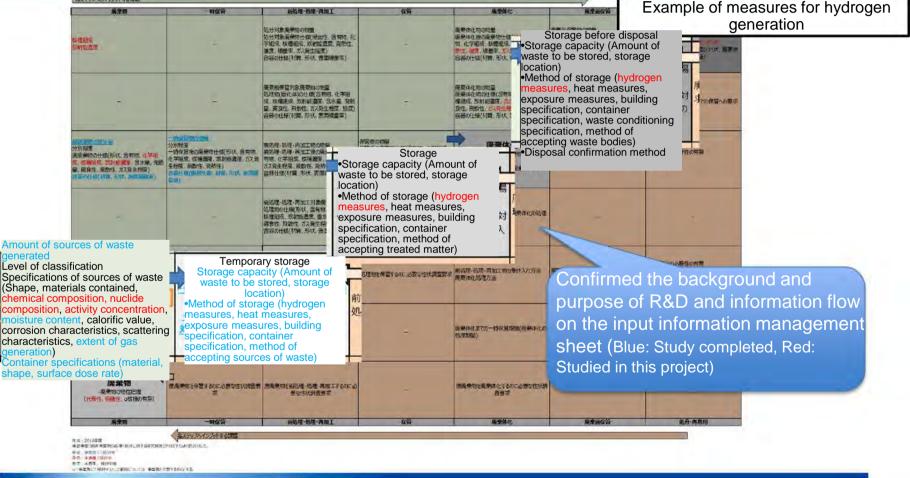
RRN		解処理·処理·再加工	保護		殿園体化	液重解依常	统分·菁和用
News Helas	~	私分対象原葉物の物量 私分対象原葉物は様(漫出門。 8有物、化 学術品、成準部品、成制物原度、発動作、 領原、線重率、均2条生物度) 容器のは優(対算、形状、長面線重率)	-	1	NH 他家、RF 平静の打場(N	用重新投資物の効果 申請利益資源の用量物(1時(週出作)。含有 他、化学相比、約個相比、於新修具有、2	BONSIAL (BUNS (718)
-	×	東京約役室計畫原稿的の物量 前期物(固化体)の仕様(尚有物、化学組 氏、板理細点、放射板濃度、含水量、発熱 夏、高貴性、供配性、ガス先生現度、強度) 前毎の仕場(対算、形式、長期線量率)	-	8	RANDOR (orang	l, the input ir e cells) from ream is insu	downstream
周期の自己 原葉物心は使作状、食育菜、化学等 、高葉性に発動性、肉次等化酸素 、高素性、発動性、ガス等化酸素) ログサポ(計算、完大、気力(1)、四)	一時代間後の東部和仁樹(形状、合有物、 小時代間後の東部物仁樹(形状、合有物、 化学和成、研羅集度、飲食物濃度、ガス等 全相度、無数性、容勢性) の時代的(例外原因、不満、用状、例用原 見集)	部3)漫-3)漫-高加工物の物量 期3)漫-3)漫-高加工物の原具物社優(含 有明、化学相近、存種素質、放身相高度、 ガス発生相度、発動性、発動性) 再級社優(対賞、形状、音楽線量率)	保管物心物量 体管物心病量物(1倍(角有物 标理温度、投射和温度、ガス 数代、完新作) 容器(1倍(数用中数、利量、 量率)	除生物度 . 飛	· 加度中華 (如此)参考書物量、初度中 -初度中華 (如此)参考書物量、初度中 -初度合法 (如此)合計、原稿物型入分 (注)	# 夏 /#2.51法	レール(23)の必要性の有限 何理集変制的 発動量制約
-	~	前処理・処理・典加工対象理算物の計量 新度物の仕様(石杖、魚有新、仕学能成、 桁面相反、助制物理定、魚水量、発動量、 調査性、ਜ数性、ガス発生程度) 高額の仕様(材質、形状、表面修備家)	保管 ・保留設置 (保留対象用数 一保留方法 (水面)(現 数) 用、確定性法 研究(法 気) 法)] ABAILETOKNAM(ABAILON) MM)	-	+
用電動的計算作用於、資源就、化学等 高量加速 公共制度者。 法大量、 容赦 . 導動性、 局動性、 加久保生物度) . 同時代, 利用、 加久保生物度)	- FAIRE STATE STATE CONSTRUCTION AND STATE CALLS CONSTRUCT AND STATE CALLS FROM STATE AND STATE CALLS FROM STATE AND STATE STA		1.12me####50120#0		6回帰・回帰・異議工物の受け入れ方法 育業体化和増方法	●要得該項目 ■要得該方法	レベル以外の必要性の有限 ガス発生所容量 約.州に含意に考えられる物質の影響有単純 料
日本の200 第三部の仕様(形状、音写物、化学部 「雪電明」、約344(高句、二文三、名称 「雪音性、発析性、文三記主文正) 」の仕事(名字、明句、明句)、明句(古書)		新会い第一級2日までの代展期間を(約3) 第一級2日・第1日日までの代展期間を(約3) 第一級2日の利用期間)	-		用製体化までの一時な開始M(用製体化の 5個単加)	-	-
廃棄物 -東東地の時代日間 ((15世), 1921年)。66月20日集)	anatheora tonine on the set R	波思算物を約約20年、約25・共加工するのに必 要な性状態重要求	-		日本語を予算体化するのに必要なれた5 宣告水	-	Railofanthef.
奏業物		NAG-SAG-RAI	**	Desult	af a alam a a dia di		
E : 2010/FM	A2597A-02791-4388					e input informatio of slurry from mul	
	THE PERSONNELLINE.			system		,	· · · · · · · · · · · · · · · · · · ·

Study of the background and purpose of R&D (3/6)


(Research on characterization of "Stream S10 Slurry from multi-nuclide removal system" and example of measures for hydrogen generation)

(Example of measures for hydrogen generation)

What is Stream S10 Slurry from multi-nuclide removal system?


Sr-based waste with a moisture content of about 90%, collected in a high integrity containers (HIC) and stored at a temporary storage facility.

Until FY2017, options such as pre-treatment, treatment, reprocessing and storage were provided by means of the waste stream. The Subsidized Project suggested that the water reduction treatment (drying / dehydration, etc.) would be promising.

Study on the background and purpose of R&D (4/6)

esearch on characterization of "Stream S10 Slurry from multi-nuclide removal system" and example of measures for hydrogen generation) While studying measures for hydrogen generation, based on the characteristics of sources of waste collected in the research related to characterization, the ideas pertaining to treating that waste and measures for hydrogen generation from the treated material and waste, were studied.

IRID

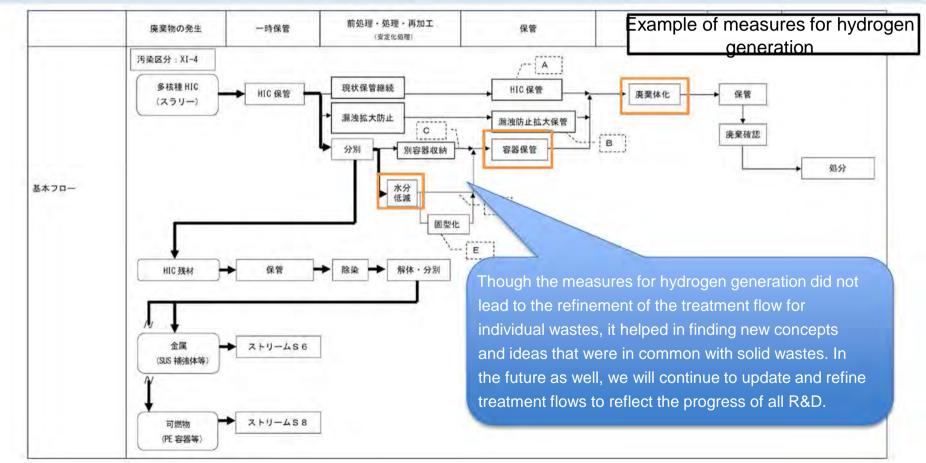
©International Research Institute for Nuclear Decommissioning

Study on the background and purpose of R&D (5/6)

Research on characterization of "Stream S10 Slurry from multi-nuclide removal system" and example of measures for hydrogen generation)

Example of measures for hydrogen generation

The study of measures for hydrogen generation involved the following:


- i. In this project, the concept of hydrogen generation from solid wastes, hydrogen generation evaluation methods, and measures for hydrogen generation were studied.
- ii. Findings from other countries on regulations and technical requirements were investigated during the study.
- iii. An overview of the characteristics of solid wastes in Fukushima Daiichi had to be provided while investigating the findings from other countries.
- iv. While providing the characteristics, the findings obtained through characterization in this project (chemical composition, nuclide composition, activity concentration, etc.) and information provided by the operators was used (moisture content, etc.)
- v. Although the methods for storage, treatment, transfer, and disposal of individual wastes (≒ refinement of treatment flow) have not been determined because the provided information is still being studied for its representativeness, etc., it was suggested that the concepts from other countries can be applied to Fukushima Daiichi as well.

-Action Items for FY2018-

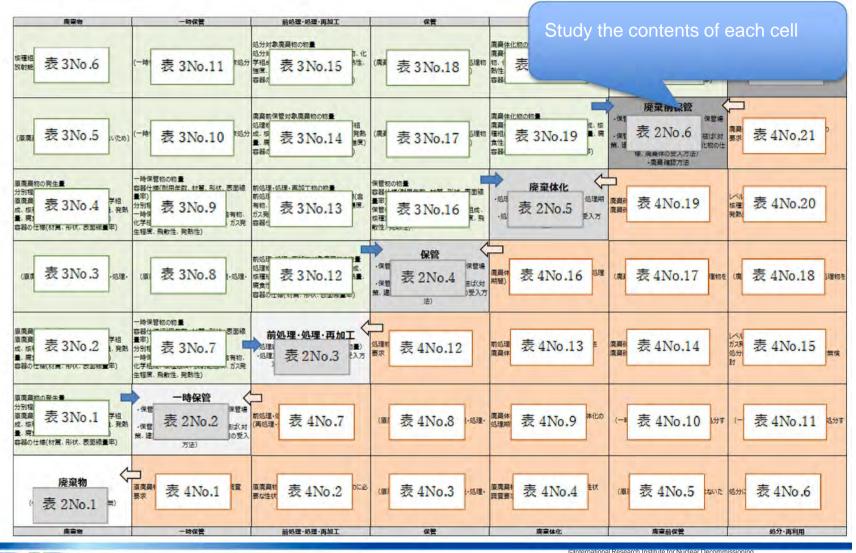
Study on the background and purpose of R&D (6/6)

(Research on characterization of "Stream S10 Slurry from multi-nuclide removal system" and example of measures for hydrogen generation) The treatment flow will be updated and refined as necessary in accordance with the progress of R&D.

(The measures for hydrogen generation consolidate the common concepts and the treatment flow was not updated in FY2018. The specific details of management method of individual waste will be established in the future.)

International Research Institute for Nuclear Decommission

-Action Items for FY2018-

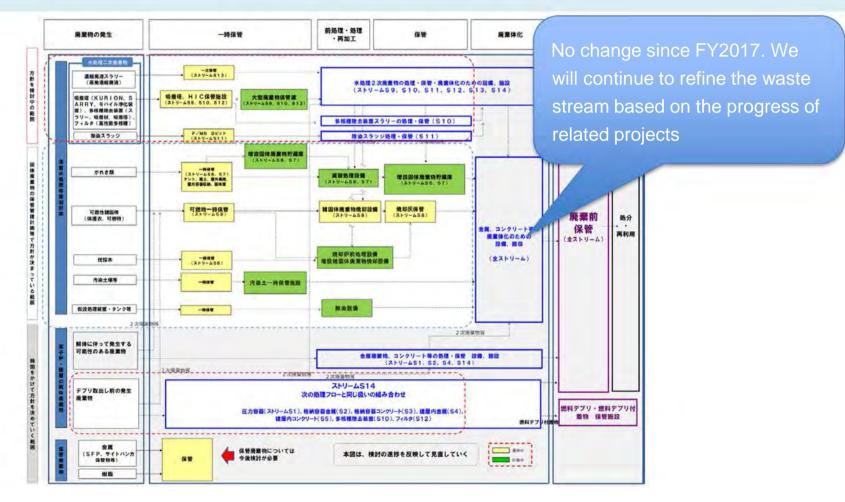

Study of the concept of input information management sheet (1/2)

Clearly specify the operation details and target to be treated for each step.

	Waste	Temporary storage	Pre-treatment, treatment and reprocessing	Storage	Waste conditioning	Storage before disposal	Disposal / Reuse
Important operations	 Generation of sources of waste Checking the characteristics of sources of waste 	• Temporary storage of sources of waste until pre- treatment, treatment and reprocessing	 Treatment and processing for stable storage during a relatively long duration Treated into a disposable form in some cases 	Storage until waste conditioning	Treated into an underground disposable form	 Storage of waste until disposal Confirmation of disposal (especially embedded radioactivity) 	Underground disposal of waste (or reuse)
Target to be handled	Source of waste	• Source of waste	Source of waste	Treated matter	 Source waste Treated matter 	 Treated matter (in some cases) Waste 	 Treated matter (in some cases) Waste

-Action Items for FY2018-

Study of the concept of input information management sheet (2/2)


IRID

(1) Integration of R&D Results (Establishment of Waste Stream) -Integration into Waste Stream-

The refined treatment flow was integrated as a waste stream to verify the total image of waste management

IRID

RID

- 1. A method for evaluating the integrated progress, consistency and issues of R&D was created using the input information management sheet, time schedule arrangement table, and waste stream.
- 2. It was confirmed that the R&D for treatment and disposal of solid waste is being carried out with respect to waste that is currently being generated and waste, treatment and storage of which is planned to start soon.
- 3. The issue of insufficient inputs from downstream (disposal side) to upstream (waste side) in the R&D for treatment and disposal of solid waste was identified.

6. Schedule and Project Organization

Research and Development for Treatment and Disposal of Solid Radioactive Waste: FY2019 Study Schedule (1/6)

Description	1.	1.15				_FY20)18					
Description	4	5	6	7	8	9	10	11	12	1	2	3
naracterization	1.1	-	-	1111			1		1.2.1			1.22
Gathering and managing analysis data				-1.11	= 1	1.0	1	1	1.1	1.	2===1	
Understanding the contamination distribution				-1.1						Study next fis	l plan for th scal year	е
Analysis plan										- 1		
Transporting analysis samples	Trans samp	 sport a oles (fir	nalysis st time)		sar Sample	nples (s es will be o	econd tin	ne) S	Franspor samples	rt analys (third tin	ne)	e
Conducting analysis		Re	eport $ abla$			eport			state of pro		f the sample	es. eport
Studying waste classification	study	(review	adjusted	results will t as needed	depending	on analys	sis results.		a rule. Th	e timing of	reporting wi	ll be
				on analys	ults on w is metho	/aste clas d.	sification	will be refle	ected in t	he future	study	
2 Developing sampling technologies	-			on analys	ults on w is metho	vaste clas d.	sification	will be refle	ected in t	he future	study	-
Collecting samples of secondary waste generated from contaminated water treatment including sludge	Draft study	plan	₽.	Study the	is metho e specifi	d. cs of co	llection		ected in t	1	ummariz	e
Collecting samples of secondary waste generated from contaminated water treatment including	Draft study Draft study			on analys	e specifi nt/study	d. cs of co mockup cs of co	llection devices		ected in t	S		
Collecting samples of secondary waste generated from contaminated water treatment including sludge (collecting cesium adsorption material) (Collecting adsorption material from secondary	1	plan		Study the equipment Study the equipment	e specifi nt/study	d. cs of co mockup cs of co mockup	llection devices		v P P P P P P P P P P P P P P P P P P P	S	ummariz	
Collecting samples of secondary waste generated from contaminated water treatment including sludge (collecting cesium adsorption material) (Collecting adsorption material from secondary cesium adsorption apparatus (SARRY))	Draft study Prepare fo	plan or on		Study the equipment Study the equipment	is metho e specifi nt/study specifi nt/study sludge	d. cs of co mockup cs of co mockup	llection devices lection devices		V	S	ummariz	e

RID

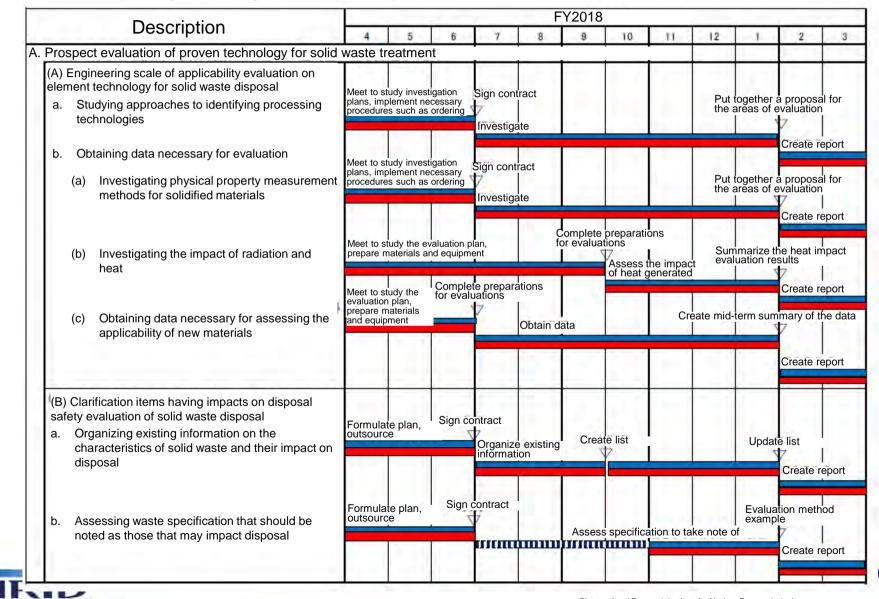
170

Legend Blue: Plan Red: Performance

Research and Development for Treatment and Disposal of Solid Radioactive Waste: FY2019 Study Schedule (2/6)

Description						FY2	018		-			
Description	4	5	6	7	8	9	10	11	12	1	2	3
 ③Optimizing the analysis method Studying the contamination mechanism and representativeness of the data 	Study the mechanis	contamina n (review)	ation	Study dat represent		(review)		ethod to ev tativeness		Summa	lirize	1
 Streamlining the analysis method 	Stu	udy plan		7	Stu	udy metho	ds for stre	amlining		s s	Summarize	
 Managing analysis data Creating an analysis database 		udy ecificatio	ns	-	C	reate a d	atabase	(improve)		Mana	age/summ	arize
 Organizing and updating waste data 	Draft	study pla	in T	Study d revised		ent and r	evision p	olicies, di	sclose T	S	Summarize	7
 Increasing the accuracy of the analytical evaluation method 	Stu	ıdy plan	7	Study ac		velop me	ethods	Calculat inventor	-	Organiz procedu	e ires/Summ	narize 5
Analytical evaluation methodGathering fundamental data	Stud	dy plan	7	Co	llect func	lamental	data as a	an experir	nent T		Summariz	e T
 Summarizing the comprehensive inventory evaluation 	St	udy plan	- 7	Cal	culate/se	et invento	ry, build j	procedure	es T	ę	Summarize	7 9
 Measures for materials with impact on disposa Approach to setting allowable concentrations 		idy plan			ly approa centratio		tting allow	wable	7	s	ummarize	7
 Study impact on disposal safety 	Stu	ıdy plan		Study	quantitat	I ive evalu	l ation me	I thods	7	s	ummarize	∇

.

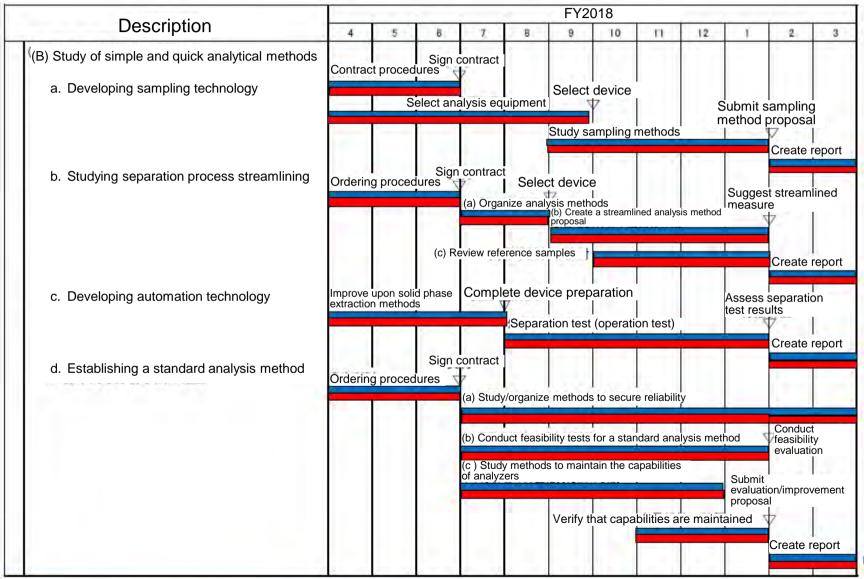

arch and Development for Treatment and Disposal of Solid Radioactive Waste: FY2019 Study Schedule

Legend Blue: Plan Red: Performance

Decerintien						_FY2	018					_
Description	4	5	6	7	8	9	10	11	12	1	2	3
ted to pre-disposal management	St	udy plan		Study the existing te			-Challenge technolog	es in apply ies to acci	ing such dent waste		Summarize	e ⊽
nd evaluating storage and management methods	according	to the cha	aracteris	stics of the	solid was	te			-	1		
g storage measures for high dose waste es for hydrogen gas generation (investigation of cases abroad)	St	udy plan	7	knowledg	je includii	ng vent	ility of over requireme	nts/condit			Summarize	e V
ures for wastes generated by fuel debris retrieval	S	tudy plan	1	Study clas when retrie	sification a eving fuel	and stora debris	age of waste	e generate	d		I I Summarize	7 é
ing stabilization technology for secondary waste ted from contaminated water treatment ability evaluation of in-drum type glass ation technology	Draft test	t plan	7	In-drum g	plass solid	dification	n engineer	ing (scale	-up) test		Summarize	V
ng stabilization of decontamination device	(Studies	completed	d in FY2	017 due to	changes	in plans	s)	: =				
chnology related to reducing the amount of	Draft stud	dy plan	V	Study/inv classify o	estigate i contami	methods nated w	s to reduce aste	and	4		Summarize	e V
osal concept and safety evaluation olid wastes	Draft stu	dy plan	⊃ Inv	vestigate su	oject dispo	osal site	Investigate system	e/assess dis	posal 🗸		Summarize	7
research and development results (waste	Draft stu	dy plan	7	Assess in al consistency	n integrate of results.	d manne and cha	er, progress allenges yet	made, to be tack	led 🗸		 Summarize	7

Legend Blue: Plan Red: Performance

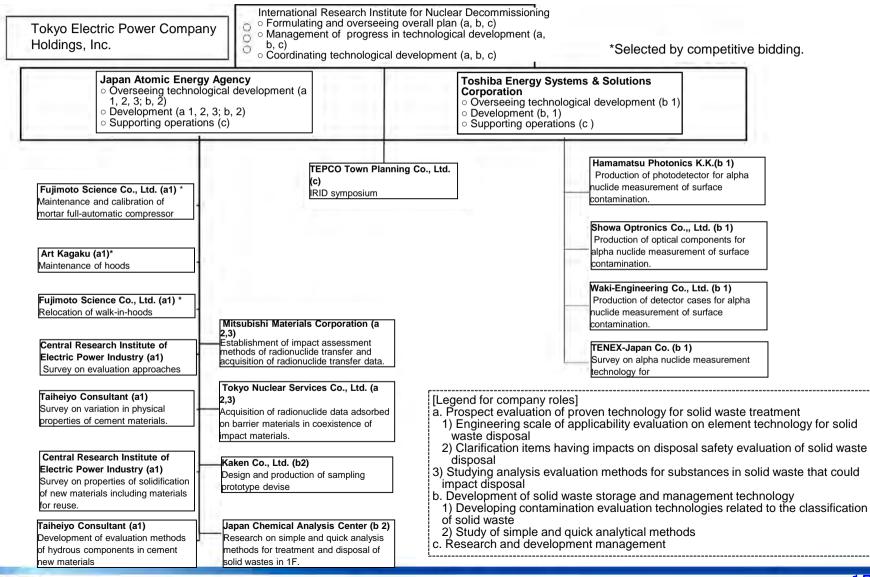
Research and Development for Treatment and Disposal of Solid Radioactive Waste (R&D on Preceding Processing Methods and Analytical Methods) FY2019 study Schedule (4/6)



Research and Development for Treatment and Disposal of Solid Radioactive Waste (R&D on Preceding Processing Methods and Analytical Methods): FY2019 study Schedule (5/6)

Deceriation	1					FY20)18					
Description	4	5	6	7	8	9	10	11	12	1	2	3
(C) Studying analysis evaluation methods for substances in solid waste that could impact disposala. Studying methods to evaluate the impact of substances that could impact disposal	Formula			contract Study cor evaluatio	mmon ir n metho	npact ods			Eva	aluation r	7	
 Investigating and obtaining new information necessary for the impact evaluation 	Formula outsourc		Sign	contract 7 Investigat	te exitin	g data ar	nd obtain	new data		Create c	7	
c. Developing quantifiable impact evaluation methods	Formula outsourc		Sign	contract						Summari	Create re	ion
and assessing applicability				Develop ar to measure	nd trial qu e substar	uantitative	e impact ev may impac	valuation m t disposal	nethods	methods	and trial re Create re	
Developing technologies related to the storage and ma	inagemer	nt of solid		Develop ar to measure	nd trial qu e substar	Lantitative	e impact ev may impac	valuation m ct disposal	nethods	imethods	7	
	1	nt of solid tudy plan		to measure	e substar	nces that r	may impac	valuation m t disposal	trating	Summar	Create re	eport

Research and Development for Treatment and Disposal of Solid Radioactive Waste (R&D on Preceding Processing Methods and Analytical Methods): FY2019 study Schedule (6/6)


-

Structure for Research and Development related to the Treatment and Disposal of Solid Waste (FY2019)

Tokyo Electric Power Compa Holdings, Inc.	• Development of overall plan	search Institute for Nuclear missioning (IRID) and coordinating engineering (1-5) echnological development (1-5) evelopment (1-5)	*Selected by competitive bidding.
Japan Atomic Energy Agency(JAEA) Overseeing technological development (1-3) Development (1-4) Supporting operations (5) 	Hitachi-GE Nuclear Energy, Ltd. ODevelopment (1-4)	& Solutions Corporation	Mitsubishi Heavy Industries Ltd. Development (1, 2,
Hitachi Healthcare Systems, Inc (1) Inspection and calibration of radiation monitoring instruments Chiyoda Technol Corporation (1)* APD inspection and calibration Hitachi Healthcare Systems, Inc. • APD inspection and calibration Hitachi Transport System, Ltd. (1) Transport of analysis samples from 1F to analysis facilities. Asima Co., Ltd. (1)* • Commissioned operation and maintenance of facility buildings for backend technology development	Tokyo Power Technology Ltd. (1)* •Support of information organizations for waste list update JGC Corporation (1) and (3)* •Case study in abroad concerning acceptance criteria of waste including influential materials to disposal •Support of survey on reasonable disposal methods applied in abroad. Inspection Development Company Ltd. (1)* -Commissioned research on the analysis of β- nuclides in contaminated water treatment syster in 1F as well as subsequent organizing and interpretation of the analysis data. Nuclear Development Corporation (1)*	Cesium Adsorption Apparatus (SAF test facility. National Nuclear Laboratory, UK	FitTech Co., Ltd. (1) Transport and collection of stored secondary wastes generated by waste water treatment(HIC). Orano ATOX D&D SOLUTIONS Co., Ltd. (2) Detailed study on issues of storage, storage requirements, and countermeasures of reducing hydrogen reportion
Mitsubishi Materials Techno Corporation (1)* Inspection and maintenance of instrumentation facility for backend technology development Mitsubishi Materials Techno Corporation (1)* Inspection and maintenance of instrumentation	 Radiation analysis of wastes generated from accident. Nuclear Development Corporation (1)* Radiation analysis of wastes generated from accident in FY2018. Nippon Nuclear Fuel Development Co., Ltd. (Analysis and estimation of high-radioactive 	Study on waste management (hydrogen gas generation) (commissioned project) Central Research Institute of Electric I Industry (1) Study on accuracy improvement of analy evaluation methods (commissioned proje Mitsubishi Materials Corporation (1)*	Power vtical
Ascend Co., Ltd. (1)* Ascend Co., Ltd. (1)* Commissioned research on analysis and tests for characterization of the secondary waster from contaminated water treatment systems in	Formation and estimation of high-factodactive materials related to 1F accident (Commissioned project) E&E Techno Service Co, Ltd. (1)* Tests for the contamination distribution assessment of waste samples to be collected in 1F E&E Techno Service Co, Ltd. (1)* Test preparation for samples to be collected in 1F, and device analysis and inspection.	Collection of data concerning nuclide sor behavior to support the inventory estimation waste zeolite. Mitsubishi Materials Corporation (1)* Impact analysis on disposal of influence and development of quantitative evaluation SynchroSoft Co., Ltd. (1) Improvement of analysis data on was generated from 1F.	on of •Legend for company roles 1) Characterization 2) Study pre-processing management 3) Study of disposal concept and safety evaluation methods for characterization of solid waste 4) Integrate research and development

Structure for Research and Development related to the Treatment and Disposal of Solid Waste (R&D on Preceding Processing Methods and Analytical Methods) (FY2019)

177'

