

平成28年度補正予算 廃炉・汚染水対策事業費補助金 燃料デブリ・炉内構造物取り出しの基盤技術開発事業

小型中性子検出器の開発 フェーズ2 最終報告会

2018年9月25日

技術研究組合 国際廃炉研究開発機構(IRID) 日立GEニュークリア・エナジー(株)

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

This document includes Confidential & Proprietary information of Rhombus Power Inc.

目次

- 1 研究の背景 目的 1-1 本研究が必要な理由 1-2 本研究の成果の適用先 1-3 研究の目標
- 2. 実施項目とその関連、他研究との関連 2-1 本研究の実施項目、実施項目間の関係性 2-2 他研究との関係性
- 3. 実施スケジュール
- 4. 実施体制図
- 5 実施内容
- 5-1 小型中性検出器の1Fの適用性評価(フェーズ1)結果
- 5-2 センサ設計および製作(フェーズ2:トライアルステージ) 5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ)
- 5-4 実機適用時の課題検討
- 5-5 目標に照らした達成度
- まとめ 6.

1. 研究の背景・目的 1-1 本研究が必要な理由

- 燃料デブリはRPVやPCV底部に存在していると考えられているが、その分布は測定できていない。
- 燃料デブリの分布を把握するために、ガンマ線量やビデオ映像など得られた情報から
 総合的に判断することが求められるが、ガンマ線量や外観だけでは燃料デブリと弁別
 することが困難なケースも多い。
- PCV内で中性子を測定できれば、アクチニド(主にCm-244)から発せられる自発核分裂
 中性子を測定することで、燃料デブリ(燃料物質)を弁別できる可能性がある。
- 燃料デブリを検知するためには、小型の中性子検出器を、遠隔操作によってきわめて 狭い経路を通って燃料デブリ近傍にアクセスし、高ガンマ線量下で、微弱な中性子を計 測する必要がある。
- さらに、中性子計測は、PCV内の燃料デブリ検知の他、燃料デブリ取り出し時の臨界 管理、燃料デブリサンプリング、収納・移送・保管等、複数のニーズがあり、適用対象の 検討も合わせて実施する。

1. 研究の背景・目的

1-2 本研究の成果の適用先

ニーズ		内容	必要な中性子検出器の概要
燃料デブリの 所在の特定・検知	水中	ペデスタル内外の地下階に、アクセスし	・高ガンマ線環境において 低中性子束の検出 ・調査目的であるため、短時間
(PCV内部調査)	気中	燃料デフリの状況を調査	であり、集積線量に対する耐性条件は比較的高くない
再臨界になる	臨界検知	燃料デブリ取り出し時、長期間にわたっ て、燃料デブリの状態を監視	・高ガンマ線環境かつ、集積線 量の高い耐性が必要
場所での監視	再臨界	堆積物除去の際の、燃料デブリの状態 を監視	・高ガンマ線環境での高中性子 東検出が必要
燃料デブリ取り出し・サンプリ ング作業中の監視		取り出し・サンプリング作業中の臨界状 態を監視	・高ガンマ線環境において 中性子束を検出
収納、移送、保管		収納缶内の燃料デブリの状態を監視	・高ガンマ線環境かつ、集積線 量の高い耐性が必要

1. 研究の背景・目的 1-3 研究の目標

【目標1】フェーズ1の知見に基づき、要求仕様(スライド⑪)に適合した、汎用の センサシステムを完成させる。 ⇒≪フェーズ2 実施項目1≫

(1)センサ設計および製作(トライアルステージ)

(2) センサユニット試作および評価(プロトタイプステージ)

【目標2】PCV内部詳細調査への適用を想定[※]し、実機に適用する際に検討が必要 となる事項を評価し、問題なく適用できることを確認する。

⇒≪フェーズ2 実施項目2≫

実機適用時の課題検討

※PCV内部詳細調査の調査装置計測ユニットの情報は事務局を介してより入手。

2. 実施項目とその関連、他研究との関連
 2−1 本研究の実施項目、実施項目間の関係性

2. 実施項目とその関連、他研究との関連 2-2 他研究との関係性

3. 実施スケジュール

No	項目							2017	/年度								20	018年原			
110.		х н	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月
1	マスタースケジュール					₹71	ーズ	中間	- 報告会 	会 フェー	-ズ1		告会	'ı—7	 ズ2中	 間報告	会∇ フェー	<u>-ズ2</u> 島 <u>補助</u>	<u>最終報</u>	告会了	7
2	【フェーズ1】 センサ基礎特性試験	険、1Fへの適用性評価他	-																		
3		(i)センサ設計および製作			開発	;方針(の検討	, Ph1	抽出診	果題検	討他										
4		(トライアルステージ)							セン	レサの	設計、	製作	各種	試験	/						
5		(ii)センサユニット試作及び評価							t	ンサニ	ュニッ	の設	計、製	作、名	種検討	正試験	· 🖌		_		
6	【フェース2】 中性子検出装置 の開発	(プロトタイプステージ)														最終	冬性能	評価訪	战験		
7		(iii)センサを調査装置に搭載する際に検討が必要と							調査	装置計	-測그	ニット	青報入	手■							
8		なる事項の評価									環	境、設	置方法	、等詞	平価	/					
9		全体評価・まとめ																			
10	0 「参考」 実機実証(PCV内部詳細調査) 本事業の範囲外																				

4. 実施体制図

5. 実施内容 5-1 小型中性検出器の1Fの適用性評価(フェーズ1)結果 5-1-1 CMOS型中性子検出器の測定原理

中性子線の一部が反応層で核反応によりα線と³Hになる

- 中性子との相互作用により生じた重荷電粒子により、CMOSピクセル上に明る いクラスタパターンを生成。
- ガンマ線の場合、相互作用により生じた電子により、CMOSピクセル上に中性 子と比較して小さなパターンを生成。

5-1 小型中性検出器の1Fの適用性評価(フェーズ1)結果 5-1-2 CMOS型中性子検出器による中性子の測定例

■ ライブラリパターンとの一致による判別により、中性子/ガンマ線の弁別性が高い

グレースケール(黒0~255白)の最高値(255)のクラスタ数を計測 →ガンマ線量率環境でも、中性子を検出可能。

小型化の開発が見込めるCMOS型中性子検出器を用いて、汎用ユニットの試作器を 製作し、性能を評価した。

5-2 センサ設計および製作(トライアルステージ) 5-2-1 フェーズ2の要求仕様

1	1	
-		

項目	条件	仕様
	中性子 検出感度	計測時間1時間で、燃料デブリから発生した中性子と有意に判別できる計数 を、0.1n/(cm ² ・s)の中性子束に対して得られること。
中性子 検出 性能	中性子ーガンマ線 弁別性能	上記の感度を線量率1000Gy/hのガンマ線場の中で達成できること。
工化	中性子束の 計測範囲	0.1n/(cm ² ・s)以上、1,000n/(cm ² ・s)以下の中性子束を計測できること。
T⊞ ∔ 立	耐放射線性	累積線量1000Gyまでは、上記中性子検出感度及び弁別性能が保たれること。
['] 現現	耐熱性	<mark>温度40℃の環境下で正常に動作し性能が保たれること。</mark>
迴心工	その他	水中でも正常に動作し性能が保たれること。
サイズ	寸法	直径20mm、高さ40mmの円筒に収まること。
電源、 ケーブル	信号ケーブル	検出器から信号を取り出すために <mark>直径3mm以下、長さ60m以上</mark> のケーブルを 用いても、検出性能の仕様を満たすこと。また、ケーブルは目的の測定場所 に送り込むのに十分な柔軟性を有すること。
等	電源	格納容器外から電源を安定して供給できること。または、電池等の電源も含め てサイズ条件を満たすこと。
	位置	信号処理装置は格納容器外で人がアクセスできる場所に配置できること。
16万 加田玄	速度	中性子を検出したことを遅滞無く示せること。
观垤术	操作	特別に長期間の訓練等を行わずに中性子束を測定することができること。

5-2 センサ設計および製作(トライアルステージ) 5-2-2 技術的課題に対する要素試験の内容

(12)

センサユニットの設計に反映することを目的に実施

	カテゴリ	内容
(1)	CMOSセンサのばらつき	複数個のCMOSセンサに中性子線を同一条件にて 照射し、出力のばらつきを評価
(2)	CMOSセンサの積層効果	CMOSセンサを複数枚重ねて検出効率を評価
(3)	ケーブル選定	同じ試験体系で2種のケーブルそれぞれを接続し て照射し、比較選定
(4)	耐高温特性	CMOSセンサを直接加熱し(40°C)、検出性を確認
(5)	検出下限値(0.1n/(cm²∙s))	低い中性子束の線源を用いて検出下限を評価

5-2 センサ設計および製作(トライアルステージ) 5-2-3 試験結果とプロトタイプ設計への反映

	カテゴリ	試験結果	プロトタイプ設計への反映
(1)	CMOSセンサの ばらつき	±10%以内 (統計的なばらつき程度)	• 同一ロット内では、無作為抽出可能
(2)	CMOSセンサの 積層効果	9センサで1センサと比較し 4.7倍の感度	・ 9枚のCMOSセンサを積層構造とする ※スライド16の検討結果、3枚に変更
(3)	ケーブル選定	ケーブル延長は必要となるが、 直径が許容範囲内である 同軸ケーブルを選定	 ケーブル延長のための増幅器・中継 器等の仕様検討
(4)	耐高温特性	中性子検出は可能 但し、CMOS自体の発熱によ る周辺の昇温がある。	 ・プロトタイプで再評価 (ケース内発熱の可能性があるため)
(5)	検出下限値 (0.1n/(cm²∙s))	複数センサ構造において 0.1n/(cm ² ・s)を検知可能な 見込み	 解析による確認が可能なため最終 的な構造で下限値を評価

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-1 センサユニットの構造

[14]

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-2 (参考)センサユニットの構造検討(1/2)

※ MCNP: Monte Carlo N-Particleのシミュレーション

 $\left(15\right)$

RID

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-2 (参考)センサユニットの構造検討(2/2)

		要求仕様	案0	案1	案2	案3	案4	案5	案6	案7
検	討実施項 目		当初案	初期案の一つ。	素子数、ケーブ ル芯線を減らし、 細線化を検討。	ケーブル長/径を 送形式を検討。	満足する別の伝	アンプ内蔵による の延伸を検討。	るデータ伝送距離	センサ数を減らし、 ケーブル長/径を満足 する方法を検討
	素子数		9	9	6	9	9	9	6	3
	伝送		デジタル	デジタル	デジタル	デジタル	デジタル+ <mark>光</mark>	デジタル	デジタル	デジタル
+~	データ収 集		3センサ毎	3センサ毎	3センサ毎	9センサ毎	3センサ毎	3センサ毎	3センサ毎	3センサ毎
快 討 項	ケーブル ※		同軸B×3	同軸A ×3	同軸B ×2	同軸A ×1	光ファイバ+ 電源同軸B	同軸B×3	同軸B×2	同軸A ×1
圓	電源供給		同軸に含む	同軸に含む	同軸に含む	同軸に含む	同軸B	同軸に含む	同軸に含む	同軸に含む
	内部装置	設計	-	-	-	伝送基板の新 設計	光伝送変換 +光源	ユニット内に アンプ	ユニット内に アンプ	-
	外部装置	のみ	中継器	-	中継器	-	-	-	-	-
要	サイズ	Ф 20mm × 40mm	Ф 20mm × 40mm	Ф 20mm × 40mm	Ф 20mm × 40mm	Φ40mm× 40mmより大	Φ40mm× 40mmより大	Ф 20mm × <mark>46mm</mark>	Ф 20mm × 40mm	Ф 20mm × 40mm
(求仕様	ケーブル 長	60m	30m (→60m)	60m	30m (→60m)	60m	60m	45m	45m	60m
との比	ケーブル 径	<3.0mm	3.3mm (>3.0mm)	6.2mm	3.1mm (>3.0mm)	2.8mm	< 3.0mm	3.3mm (>3.0mm)	3.1mm (>3.0mm)	2.8mm
較	感度	0.1~1000nv で検知可能	5.8cph @0.1nv	5.8cph @0.1nv	4.6cph @0.1nv	5.8cph @0.1nv	5.8cph @0.1nv	5.8cph @0.1nv	4.6cph @0.1nv	2.8cph @0.1nv
Ē	評価結果		ケーブル長のみ未達。 なお実運用を考慮す ると、搭載ロボットに 中継器は設置可能と は判断される。	ケーブル径 のみ <mark>未達</mark>	ケーブル長/径 が <mark>未達</mark>	センササイ	(ズが <mark>未達</mark>	ケーブル長/径、 サイズが <mark>未達</mark>	ケーブル長/径 が <mark>未達</mark>	すべての 仕様を満足

■ RID ※ 同軸A: φ2.8mm、同軸B: φ1.4mm

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

16)

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-3 中性子検出システムの検討(1/5)

CMOSセンサ···3枚、積層

(17)

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-3 中性子検出システムの検討(2/5)

ユーザーインターフェース

18)

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) [19] 5-3-3 中性子検出システムの検討(3/5) 検出アルゴリズムの開発経緯(1/3) STEP 1: ピクセルイメージデータ測定 STEP 4:中性子束変換(n/(cm²·s)) (今回仕様:36万ピクセル、60fps) 予め校正場で取得したn/(cm²・s)/cpsを 入力データ(デジタル): 乗じて中性子束に変換 座標 時刻(1/60秒間の総数) 強度(8bitグレースケール STEP 3: 中性子カウント出力(cps) (0-255))【イメージ】 一定時間計測、中性子カウントを算出 (60フレームが1秒分に相当) STEP 2: 粒子パターン認識アルゴリズムによる中性子信号の自動識別 中性子の自動判定プロセス ガンマ線・中性子束の照射データ(画像)を用いて パターンライブラリへの入力データを取得。 強度255のピクセル形状をパターンライブラリに登録 ※次ページ以降に詳細説明 /イズ(ガンマ起因 パターンとマッチングできたクラスタ(粒子パターン)を、 中性子と判断 中性子とは判断しない

| 検出アルゴリズムの開発経緯(2/3) - アルゴリズムA(フェーズ1~フェーズ2(2018年5月))

・強度255(完全な白)が、4ピクセル(2×2)以上固まって表出された時に、中性子と判断

課題:1000Gy以上の高ガンマ蓄積時に、全体がホワイトアウトし誤検知が増加(フェーズ1) ⇒ 全体の強度に応じて、検知サイズの閾値を設定(次ページのアルゴリズムB)

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-3 中性子検出システムの検討(5/5)

21

検出アルゴリズムの開発経緯(3/3) アルゴリズムB(プロトタイプステージUMD試験8/9迄)
アルゴリズムC(プロトタイプステージUMD試験8/10以降)

例) 強度が高くなる(高ガンマ蓄積・高温環境の継続環境等) 場合の中性子検出

※強度(CMOS画像の白さの平均値):集積600~800Gy(1028Gy/h, 40~50分)で100~150程度、1000Gy以上で150以上程度

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-4 評価試験内容(1/2)

UMD(※)試験体系

中性子線源、ガンマ線源からの距離を調整することで、それぞれの強度を目的の値に調整

(※)UMD:メリーランド大学

5-3 センサユニットの試作および評価 (フェーズ2:プロトタイプステージ) 5-3-4 評価試験内容(2/2)

評価試験項目

試	カ			試験卶	ミ件 <mark>(赤</mark> 드	は日立で	での追試	験)
脉 脉 No	テゴ	項目	確認事項(要求仕様)	中性子	γ線量 率	γ線集積 線量	温度	他の条件
	リ			(n∕cm²⋅s)	(Gy∕h)	(Gy)	(°C)	(—)
1	味田	中性子 検出感度	0.1n/(cm²·s)の中性子を1時間以内に 検知可	0.1 0(100分) <mark>0(50時間)</mark>	0	0	20	-
2	子検出 対	中性子ーガンマ線 弁別性能	1000Gy/hのガンマ線環境下で上記を 達成可	0.1	1028	1028	20	—
3	比能	中性子束の 計測範囲	中性子束の計測範囲を確認(ガンマ 線量率をパラメータとして実施)	0~ 737	0~ 1028	—	20	—
4	锢	耐放射線性	ガンマ線の集積線量に対する検出性	737	1028	0 ~ 1542	20	—
5	境適田	耐熱性	雰囲気温度40℃でのセンサ健全性	737	0	0	20~40 23~60	—
6	竹性	水密性	水没後のセンサ健全性	0	0	0	20	通電確認 検出可否
\bigcirc	複合	耐放射線·耐熱	複合過酷環境下での健全性	737	1028	—	40	—
8	已 已	角度依存性	中性子入射角度の検出性への影響	100/0	0/1028	_	20	0 ~ 180°

■ ①中性子検出感度

<u>UMDでの試験</u>

	中性子束(n/(cm ² •s))						
	BG	0	.1				
	100 分	60 分	120分				
1回目	0 カウント	2 カウント	6 カウント				
2回目			5 カウント				
3回目			3 カウント				
	平均	2.3 (解析て	cph ミ(よ2.8)				

<u>日立での試験</u>

【イメージ】

24

中性子線源、ガンマ線の無い状況で50時間カウント無し

0.1n/(cm²・s)単独場において、中性子を検出できる見通しを得た。

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(2/12)

②中性子ーガンマ線弁別性能

25

IRID

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(3/12)

(参考)②中性子-ガンマ線弁別性能

26)

 BGにおいて中性子検知は無く、0.1n/(cm²・s)
 において1カウントという結果となった。
 中性子を検知できているものの、高ガンマ環境 下では、0.1n/(cm²・s)の検知は難しい。

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(4/12)

③中性子束の計測範囲

- 試験は2回実施。
- センサー寿命(感度維持)は、30分~1時間程度(約500~1000Gy)

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(6/12)

• 雰囲気温度が上昇しても、中性子検出に顕著な差は無い。

RID

- 水深1mに水没 ·合計14時間以上(14時間50分)浸漬 センサを導通させ故障の有無を確認
- 浸漬により水密性が損なわれないことを確認。
- 14時間の水没状態の後でも、動作を確認。

5-3-5 評価試験結果(7/12)

- 試験(2) ※日立で中性子照射試験を実施した結果
- •中性子束照射(10分)

⑥水密性

試験(1)

- 水深1mに水没
- 合計1時間浸漬
- 中性子束照射(10分)
- 水没前75カウント、水没後62カウントでほぼ変化無し
- CMOSグレースケールの変化や画像の特定領域の 欠落等は見られなかった

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(8/12)

⑦耐放射線·耐熱

・ 中性子のみの照射において、室温時とほぼ変わらないカウントができた。
・ 40℃・1028Gy/hでは、感度が大幅に落ちた。

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(9/12)

⑧角度依存性

(32)

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(10/12)

⑧角度依存性

0~90°:センサ面の角度が45°までは大きな変化は無く、以降ではカウント数が低下。 :高ガンマ環境化ではさらに低下 90~180°:135°までは大きな変化は無く、以降ではカウント数が低下

(背面のセンサヒートシンクのための金属体による遮蔽の効果が大)

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(11/12)

項目	条件	要求仕様目標	結果(○:適、△:条件付適)
中性	中性子検出感度	0.1n/(cm²・s)の中性子束に対し1時間で 中性子計数を取得できること。	〇合計7時間の測定を実施。1時間当たり 平均2.3個の中性子を検出
1 子 検 出	中性子-ガンマ線 弁別性能	上記感度を線量率1000Gy/hのガンマ線 場の中で達成できること。	△ガンマ線によるカウントが出ることで、 弁別できない場合有
作 能	中性子束の計測 範囲	0.1n/(cm²・s)以上、1,000n/(cm²・s)以下の 中性子束を計測できること。	〇中性子束のみの環境であれば、要求 仕様の範囲で計測可能
晋	耐放射線性	累積線量1000Gyまで、上記中性子検出 感度及び弁別性能が保たれること。	△累積線量1000Gyまで中性子を弁別可。 感度は若干低下するケース有
^攻 境適応	耐熱性	温度40℃の環境下で正常に動作し性能 が保たれること。	〇温度40℃の環境でも、常温と同一 性能で検出可能。
性	その他	水中でも正常に動作し性能が保たれること。	〇水中においても浸水無く動作
信号伝送	信号ケーブル	検出器から信号を取り出すために直径 3mm以下、長さ60m以上のケーブルを用 いても、検出性能の仕様を満たすこと。	〇上記試験は、全て、左記の要求仕様を 満たすケーブルを用いた実施

5-3 センサユニットの試作および評価(フェーズ2:プロトタイプステージ) 5-3-5 評価試験結果(12/12)

項目	目的	実施条件	試験結果
その他の	耐放射線・耐熱 (複合過酷環境下での 健全性を確認)	・中性子束:0.1、737 n/(cm²・s) ・ガンマ線線量率: 1028 Gy/h ・照射時間: 60、10 分 ・雰囲気温度40℃	 高温条件(雰囲気温度40℃)、または 高ガンマ線量率条件(1028Gy/h)において、 感度の変化は小さい。 高温条件と高ガンマ線量率条件が複合し た場合、急激に感度が低下。
試験	角度依存性 (中性子入射角度の検 出性への影響を確認)	・中性子束:100 n/(cm ² ・s) ・ガンマ線線量率: 0、1028 Gy/h ・照射時間: 10 分	 センサ面の角度が45°までは大きな変化 は無く、以降ではカウント数が低下。 高ガンマ環境化ではさらに低下。 90°以降、135°までは大きな変化は無く、 135°以降カウント数が低下 ※背面に取付けたセンサ保護のための 金属体の遮蔽の効果と推定

5-4 実機適用時の課題検討 5-4-1 実機想定評価試験内容(1/3)

評価試験項目

水中の場合

中性子検出器

ς.

	項目	内容	
(1)	水中模擬環境における 中性子計測性	 高密度ポリエチレンを用いた水中 環境内部にCMOSセンサを備えた センサケーシングを配置 堆積物模擬体(コンクリート)の内部 に配置した中性子線源(Cf-252) 由来の中性子を計測 	高さ 堆積物 燃料デブリ <u>気中の場合を想定</u>
(2)	気中模擬環境における 中性子計測性	 ・気中環境内部にCMOSセンサと 中性子減速材、中性子吸収材を 備えたセンサケーシングを配置 ・堆積物模擬体(コンクリート)の内部 に配置した中性子線源(Cf-252) 由来の中性子を計測 	×い 中性子検出器 減速材 高さ ・ ・ ・ ・ ・ ・ 、 、 、 、 、 、 、 、 、 、 、 、 、

目的:PCV内部での適用を想定し、模擬環境における中性子計測性を評価

5-4 実機適用時の課題検討 5-4-1 実機想定評価試験内容(2/3)

37

・水中模擬環境の構成

試験内容

5-4 実機適用時の課題検討 5-4-1 実機想定評価試験内容(3/3)

■ 気中模擬環境の構成

試験内容

水中模擬環境:堆積物中の中性子線源による応答

- ・各条件で中性子を検知可能
- ・線源位置(200,0)(0,250)(0,-250)で計数率がほぼ同一であり、測定ポイント1点 では3次元的な線源位置情報の取得が困難と想定
- ・実機では平面方向の計数率を取得することで不確定性を低減することが必要

堆積物模擬体の深さ方向

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

|水中模擬環境:周辺の中性子線源による応答|

- ・周辺に中性子線源が存在する場合(水中浮遊物、構造物付着物等)にも、
 中性子を検知可能
- ・使用エリア近傍(200~300mm以内)の周囲に中性子線源がある場合には、 中性子吸収材等を用いた遮蔽構造の検討が必要

5-4 実機適用時の課題検討 5-4-2 試験結果(3/3)

気中模擬環境

- ・熱中性子束が極めて低い環境であるため、検知に時間を要したが、中性子 減速材を組み合わせることで中性子を検知可能
- コリメータ形状やコリメータ内減速材サイズを変更することで、より効率的に
 中性子を検知できる可能性がある

5-4 実機適用時の課題検討 5-4-3 実機適用時の課題

(42)

水中環境

- ・実機では平面方向の計数率を取得することで不確定性を低減することが必要
- ・使用エリア近傍(200~300mm以内)の周囲に中性子線源がある場合には、 中性子吸収材等を用いた遮蔽構造の検討が必要

気中環境

- ・気中では中性子が熱化されないので、CMOSセンサの周囲に中性子減速材を 設けることで熱化の促進が必要
- 水中と比較して中性子検知に時間を要するため、事前の評価試験結果に 基づいて調査計画を立案することが必要
- より効率的に中性子を検知するため、また使用目的に応じて、コリメータ形状やコリメータ内減速材サイズを変更することで、実用性が高まると想定

5-5 目標に照らした達成度 ■ 技術的目標

(※)○達成、△:課題有

43

項目	条件	仕様	達成度(※)
	中性子検出感度	計測1時間で、0.1n/(cm²・s)の中性子束を計数できる	O:実験検証済
中性子 検出性 能	中性子ーガンマ線 弁別性能	上記感度を線量率1000Gy/hのガンマ線場の中で達成できる	△:スライド25-27参照
HC	中性子束計測範囲	>0.1n/(cm²・s)、<1,000n/(cm²・s)の中性子束を計測できる	O:実験検証済
᠇ᡂ⊥⇔᠈ᡇ	耐放射線性	累積線量1000Gyまでは、中性子検出感度及び弁別可	△:スライド28参照
埬項週 庅栍	耐熱性	温度40℃の環境下で正常に動作し性能が保たれる	O:実験検証済
ᄢᄓᆂ	その他	水中でも正常に動作し性能が保たれる	O:実験検証済
サイズ	寸法	直径20mm、高さ40mmの円筒に収まる	O:試作検証済
電源、 ケーブル	信号ケーブル	検出器から信号を取り出すために直径3mm以下、長さ60m以 上のケーブルを用いても、検出性能の仕様を満たす	O:試作検証済
等	電源	格納容器外から電源を安定して供給できる	O:試作検証済
	位置	信号処理装置は格納容器外で人がアクセスできる場所に配置可	O:試作検証済
信亏処 珊玄	速度	中性子を検出したことを遅滞無く示せる	O:試作検証済
坦不	操作	特別に長期間の訓練等を行わずに中性子束を測定可	O:試作検証済

■ 研究目標

項目	目標	達成度
1	フェーズ1の知見に基づき、要求仕様に適合した、汎用のセンサシステムを 完成させる。	センサシステム完成。【80%】
2	PCV内部詳細調査への適用を想定し、実機に適用する際に検討が必要となる事項を評価し、問題なく適用できることを確認する。	実機適用に必要な事項を抽出、解 析的・実験的に評価完【100%】

6. まとめ

- 要求仕様に則ったセンサユニットの製作・評価を実施。
- 実機適用に向けた課題・改善点は残るものの、条件付で要求
 仕様を満足するシステムを完成。
- ・ 実機適用が決まった際は、関連プロジェクトと連携する。

